KELPDAO
LRT-ETH
SECURITY
AUDIT
REPORT

44444444444

TABLE OF CONTENTS

1. INTRODUCTION 3
1.1 Disclaimer 3
1.2 Security Assessment Methodology 3
1.3 Project Overview 7
1.4 Project Dashboard 8
1.5 Summary of findings 13
1.6 Conclusion 15
2.FINDINGS REPORT 18
2.1 Critical 18

18
H-1 Excessive rights for the MANAGER role 18
H-2 An arbitrage opportunity in the rsETH price calculation for MANAGER role 19
H-3 Potential withdraw credentials overwritting by a malicious node operator 20
H-4 The reward calculation may be blocked until contract upgrade 21
2.3 Medium 22
M-1 Potential blocking of removeNodeDelegatorContractFromQueue calls 22
M-2 Potential arbitrage opportunity in the rsETH price calculation for the unpriveleged users 23
M-3 Potential yield stealing due to centralized oracle updates 24
M-4 Unsafe contract deployment and update process 25
M-5 Lack of verification for the native ETH balance and staking balance in the eigenPod 26
M-6 Inconsistent support for a native ETH token 27
M-7 Protocol functionality lockout upon adding a new token 28
M-8 Centralization risks 29
M-9 The possible inability to initialize the eigenPod field 30
M-10 The Ether can't be withdrawn from the NodeDelegator contract under certain conditions 31
2.4 Low 32
L-1 Using ERC20.transfer instead of SafeERC20.safeTransfer calls 32

L-2 A risk of blocking the functionalities with whitelisting an invalid NodeDelegator or Strategy 33

MixBytes()

L-3 A potential race condition possibliity caused by the

removeNodeDelegatorContractFromQueue function 34
L-4 A risk of admin rights revocation due to an incorrect LRTConfig address update 35

L-5 Removed NodeDelegator addresses from the LRTDepositPool queue cannot be added again 36

L-6 Excessive flexibility of LRTConfig 37
L-7 Event emission before executing the depositintoStrategy operation 38
L-8 Inability to remove tokens from the supported list 39
3. ABOUT MIXBYTES 40

MixBytes()

1. INTRODUCTION

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the
business model, investment advice, endorsement of the platform or its products, regulatory regime for the
business model, or any other statements about fitness of the contracts to purpose, or their bug free status.
The audit documentation is for discussion purposes only. The information presented in this report is
confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy,
disclose or disseminate without the agreement of the Client. If you are not the intended recipient(s) of this

document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on the audit. The security engineers check the provided source

code independently of each other in accordance with the methodology described below:

1. Project architecture review:

+ Project documentation review.
+ General code review.

+ Reverse research and study of the project architecture on the source code alone.

Stage goals
- Build an independent view of the project's architecture.

- Identifying logical flaws.

2. Checking the code in accordance with the vulnerabilities checklist:

+ Manual code check for vulnerabilities listed on the Contractor's internal checklist. The Contractor's
checklist is constantly updated based on the analysis of hacks, research, and audit of the clients' codes.

- Code check with the use of static analyzers (i.e Slither, Mythril, etc).

MixBytes()

Stage goal

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flash loan attacks etc.).

3. Checking the code for compliance with the desired security model:

-+ Detailed study of the project documentation.

+ Examination of contracts tests.

+ Examination of comments in code.

+ Comparison of the desired model obtained during the study with the reversed view obtained during the
blind audit.

- Exploits PoC development with the use of such programs as Brownie and Hardhat.

Stage goal
Detect inconsistencies with the desired model.

4. Consolidation of the auditors' interim reports into one:

+ Cross check: each auditor reviews the reports of the others.
+ Discussion of the issues found by the auditors.

- Issuance of an interim audit report.

Stage goals
- Double-check all the found issues to make sure they are relevant and the determined threat level is correct.
+ Provide the Client with an interim report.

5. Bug fixing & re-audit:

+ The Client either fixes the issues or provides comments on the issues found by the auditors. Feedback
from the Customer must be received on every issue/bug so that the Contractor can assign them a status
(either "fixed" or "acknowledged").

- Upon completion of the bug fixing, the auditors double-check each fix and assign it a specific status,
providing a proof link to the fix.

+ Are-audited report is issued.

MixBytes()

Stage goals
- Verify the fixed code version with all the recommendations and its statuses.

+ Provide the Client with a re-audited report.

6. Final code verification and issuance of a public audit report:

+ The Customer deploys the re-audited source code on the mainnet.
+ The Contractor verifies the deployed code with the re-audited version and checks them for compliance.

+ If the versions of the code match, the Contractor issues a public audit report.

Stage goals
+ Conduct the final check of the code deployed on the mainnet.

+ Provide the Customer with a public audit report.

MixBytes()

Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the

following classification:

Severity Description
Critical Bugs leading to assets theft, fund access locking, or any other loss of funds.

High Bugs that can trigger a contract failure. Further recovery is possible only by
manual modification of the contract state or replacement.

Medium Bugs that can break the intended contract logic or expose it to DoS attacks, but do
not cause direct loss funds.

Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the

Contractor, they are assigned the following statuses:

Status Description

Recommended fixes have been made to the project code and no longer affect its
security.

Acknowledged The Customer is aware of the finding. Recommendations for the finding are
planned to be resolved in the future.

MixBytes()

1.3 Project Overview
Kelp DAO provides an end-user solution for restaking, supporting both native Ethereum (ETH) and various

staking tokens. It employs EigenlLayer for its infrastructure and relies on permissioned validator services

for validator node operations.

MixBytes()

1.4 Project Dashboard

Project Summary

Title Description

Client Kelp DAO

Project name LRT-ETH

Timeline 29.01.2024 - 27.02.2024
Number of Auditors 3

Project Log

Date Commit Hash

26.01.2024 8c62af6057402f4616cc2a1d3218a277a864ee2c¢

12.02.2024 5acc61e541581926949179d9¢c5d665bdfa5021ec

13.02.2024 e75e9ef168a7b192abf76869977cd2ac8134849c¢c

Project Scope

The audit covered the following files:

File name Link

Note

initial commit for the audit
(https://github.com/Kelp-
DAO/KelpDAO-contracts)

commit for the reaudit
(https://github.com/Kelp-
DAO/LRT-rsETH)

commit with the additional
fixes (https://github.com/Kelp-
DAO/LRT-rsETH)

LRTConfig.sol LRTConfig.sol

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts
https://github.com/Kelp-DAO/LRT-rsETH
https://github.com/Kelp-DAO/LRT-rsETH
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTConfig.sol

File name

LRTOracle.sol

utils/UtilLib.sol

utils/LRTConfigRoleChecker.sol

utils/LRTConstants.sol

LRTDepositPool.sol

RSETH.sol

NodeDelegator.sol

oracles/OneETHPriceOracle.sol

oracles/RSETHPriceFeed.sol

oracles/EthXPriceOracle.sol

oracles/ChainlinkPriceOracle.sol

oracles/SfrxETHPriceOracle.sol

cross-chain/CrossChainRateProvider.sol

cross-chain/RSETHRateReceiver.sol

cross-chain/MultiChainRateProvider.sol

cross-chain/CrossChainRateReceiver.sol

cross-chain/RSETHRateProvider.sol

interfaces/IEigenPodManager.sol

interfaces/IEigenStrategyManager.sol

interfaces/IPriceFetcher.sol

MixBytes()

Link

LRTOracle.sol

UtilLib.sol

LRTConfigRoleChecker.sol

LRTConstants.sol

LRTDepositPool.sol

RSETH.sol

NodeDelegator.sol

OneETHPriceOracle.sol

RSETHPriceFeed.sol

EthXPriceOracle.sol

ChainlinkPriceOracle.sol

SfrxETHPriceOracle.sol

CrossChainRateProvider.sol

RSETHRateReceiver.sol

MultiChainRateProvider.sol

CrossChainRateReceiver.sol

RSETHRateProvider.sol

[EigenPodManager.sol

IEigenStrategyManager.sol

|PriceFetcher.sol

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/utils/UtilLib.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/utils/LRTConfigRoleChecker.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/utils/LRTConstants.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/RSETH.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/NodeDelegator.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/oracles/OneETHPriceOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/oracles/RSETHPriceFeed.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/oracles/EthXPriceOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/oracles/ChainlinkPriceOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/oracles/SfrxETHPriceOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/cross-chain/CrossChainRateProvider.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/cross-chain/RSETHRateReceiver.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/cross-chain/MultiChainRateProvider.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/cross-chain/CrossChainRateReceiver.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/cross-chain/RSETHRateProvider.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IEigenPodManager.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IEigenStrategyManager.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IPriceFetcher.sol

File name Link

interfaces/IEigenPod.sol I[EigenPod.sol
interfaces/ILRTDepositPool.sol ILRTDepositPool.sol
interfaces/ILRTOracle.sol ILRTOracle.sol
interfaces/ILayerZeroEndpoint.sol ILayerZeroEndpoint.sol
interfaces/ILRTConfig.sol ILRTConfig.sol
interfaces/INodeDelegator.sol INodeDelegator.sol
interfaces/IStrategy.sol IStrategy.sol
interfaces/ILayerZeroReceiver.sol ILayerZeroReceiver.sol
interfaces/IRSETH.sol IRSETH.sol
interfaces/ILayerZeroUserApplicationConfig.sol ILayerZeroUserApplicationConfig.sol

Deployments

Contract name Contract deployed on mainnet Comment
LRTOracle 0x349A73...0d70020d proxy
LRTOracle 0xa88845...b21F73a5 implementation
LRTConfig 0x947Cb4...69D65ec7 proxy
LRTConfig 0xc5¢cD38...3DC29700 implementation
RSETH 0xA1290d...cB99e5A7 proxy

RSETH 0x60FF20...0095A1d2 implementation

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IEigenPod.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILRTDepositPool.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILRTOracle.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILayerZeroEndpoint.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILRTConfig.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/INodeDelegator.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IStrategy.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILayerZeroReceiver.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/IRSETH.sol
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/interfaces/ILayerZeroUserApplicationConfig.sol
https://etherscan.io/address/0x349A73444b1a310BAe67ef67973022020d70020d
https://etherscan.io/address/0xa88845aF0D087ce8Cf2F6D7d7a674154b21F73a5
https://etherscan.io/address/0x947Cb49334e6571ccBFEF1f1f1178d8469D65ec7
https://etherscan.io/address/0xc5cD38d47D0c2BD7Fe18c64a50c512063DC29700
https://etherscan.io/address/0xA1290d69c65A6Fe4DF752f95823fae25cB99e5A7
https://etherscan.io/address/0x60FF20BACD9A647e4025Ed8b17CE30e40095A1d2

Contract name

LRTDepositPool

LRTDepositPool

SfrxETHPriceOracle

SfrxETHPriceOracle

EthXPriceOracle

EthXPriceOracle

OneETHPriceOracle

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

NodeDelegator

MixBytes()

Contract deployed on mainnet

0x036676...

0xd4114d..

752D375D

.759F97Df

O0x8546A7...568eF427

0xD7DB96..

0x3D08cec...

0x0379ES8..

0x4cB8d6...

OxFc4460...

0x07b96C.

0x429554...

0x92B4f5...

0x9d2Fc9...

0xe80382...

Ox049EAT..

0x545D69..

Oxeeb5470...

0x4C798C..

0x79f172...

0x395884...

OxFc5619...

.691C7704

aB30dFd2

.C63F129E

835160c4

B4559f7E

..E4429473

707748b3

32E6e388

3031C4ad

dF8374E4

1fOFBA7B

.1d6d3AB9

af2D53D3

.D5712F83

B9082c32

1c788946

2bF1cB85

Comment

proxy

implementation

proxy

implementation; license*

proxy

implementation; license*

license*

implementation

proxy, index 0

proxy, index 1

proxy, index 2

proxy, index 3

proxy, index 4

proxy, index 5

proxy, index 6

proxy, index 7

proxy, index 8

proxy, index 9

proxy, index 10

proxy, index 11

https://etherscan.io/address/0x036676389e48133B63a802f8635AD39E752D375D
https://etherscan.io/address/0xd4114da917c9266E857113E56815a8C6759F97Df
https://etherscan.io/address/0x8546A7C8C3C537914C3De24811070334568eF427
https://etherscan.io/address/0xD7DB9604EF925aF96CDa6B45026Be64C691C7704
https://etherscan.io/address/0x3D08ccb47ccCde84755924ED6B0642F9aB30dFd2
https://etherscan.io/address/0x0379E85188BC416A1D43Ab04b28F38B5c63F129E
https://etherscan.io/address/0x4cB8d6DCd56d6b371210E70837753F2a835160c4
https://etherscan.io/address/0xFc4460e7dA0f94DBB8b0171B1A9D373aB4559f7E
https://etherscan.io/address/0x07b96Cf1183C9BFf2E43Acf0E547a8c4E4429473
https://etherscan.io/address/0x429554411C8f0ACEEC899100D3aacCF2707748b3
https://etherscan.io/address/0x92B4f5b9ffa1b5DB3b976E89A75E87B332E6e388
https://etherscan.io/address/0x9d2Fc9287e1c3A1A814382B40AAB13873031C4ad
https://etherscan.io/address/0xe8038228ff1aEfD007D7A22C9f08DDaadF8374E4
https://etherscan.io/address/0x049EA11D337f185b1Aa910d98e8Fbd991f0FBA7B
https://etherscan.io/address/0x545D69B99759E7b670Df243b882700121d6d3AB9
https://etherscan.io/address/0xee5470E1519972C3eA95249d60EBD064af2D53D3
https://etherscan.io/address/0x4C798C4653b1257D5149910523D7a6eeD5712F83
https://etherscan.io/address/0x79f17234746344E0365D40be50d8d43DB9082c32
https://etherscan.io/address/0x395884D1974a839702bcFCBa176AC7871c788946
https://etherscan.io/address/0xFc561966ceaAa09f4d6CBa4AdD54778c2bF1cB85

+ The deployments with 'license’' comments have different SPDX-License-ldentifier values in the actual

deployments compared to those in the audited commit. This does not affect functionality.

MixBytes()

1.5 Summary of findings

Severity # of Findings
Critical 0

High 4

Medium 10

Low 8

ID Name Severity Status

H-1 Excessive rights for the MANAGER role High

H-2 An arbitrage opportunity in the rsETH price High
calculation for MANAGER role

H-3 Potential withdraw credentials overwritting by a High
malicious node operator

H-4 The reward calculation may be blocked until High Acknowledged
contract upgrade

M-1 Potential blockina of Medium Acknowledged
removeNodeDelegatorContractFromQueue
calls

M-2 Potential arbitrage opportunity in the rsETH price Medium Acknowledged

calculation for the unpriveleged users

M-3 Potential yield stealing due to centralized oracle Medium Acknowledged
updates

M-4 Unsafe contract deployment and update process Medium Acknowledged

M-5 Lack of verification for the native ETH balance and Medium Fixed
staking balance in the eigenPod

MixBytes ()

M-6 Inconsistent support for a native ETH token Medium Fixed

M-7 Protocol functionality lockout upon adding a new Medium Acknowledged
token

M-8 Centralization risks Medium Acknowledged

M-9 The possible inability to initialize the eigenPod Medium Acknowledged
field

M-10 The Ether can't be withdrawn from the Medium Acknowledged
NodeDelegator contract under certain conditions

L-1 Using ERC20.transfer instead of Acknowledged
SafeERC20.safeTransfer calls

L-2 A risk of blocking the functionalities with Acknowledged
whitelisting an invalid NodeDelegator or
Strategy

L-3 A potential race condition possibliitv caused bv the Acknowledged
removeNodeDelegatorContractFromQueue

function

L-4 A risk of admin rights revocation due to an incorrect
LRTConfig address update

[E5 Removed NodeDelegator addresses from the
LRTDepositPool queue cannot be added again

L-6 Excessive flexibility of LRTConfig Acknowledged

L-7 Event emission before executing the Fixed
depositintoStrategy operation

L-8 Inability to remove tokens from the supported list Acknowledged

MixBytes ()

1.6 Conclusion

The project under review is currently on an ongoing development stage of implementing the withdrawal
mechanism, yet it has already been deployed to the Ethereum mainnet and is operational with a Total Value
Locked (TVL) of approximately 140K ETH at the time of this audit. The notable difference between the

deployed version and the version subjected to audit include:

- Integration of Native ETH Deposits: The introduction of native ETH deposit functionality alongside its
utilization for restaking in the EigenPod contract, a component of the Eigen Layer project.

- Asset Swapping within LRTDepositPool: The audited framework permits governance to execute asset
swaps within the LRTDepositPool contract. This capability is aimed at optimizing asset allocation across
the Eigen Layer strategies, particularly targeting those that are underperforming or have been temporarily

paused.

The audit process revealed 4 high severity vulnerabilities; notably, these were absent in the version
currently deployed. Additionally, several vulnerabilities were categorized as low severity, attributing to the
upgradeable nature of the contracts within the project.

The project functions as a pool of multiple ERC-20 LST ETH tokens. Depositors contribute these tokens to
the pool in exchange for RSETH shares, which are subsequently engaged in Eigen Layer strategies for

reward generation, thereby contributing to the accumulation of the RSETH token's value.

The audit highlighted several key areas of potential attack vectors that could compromise its integrity and
the security of depositor stakes. Below is a detailed examination of these vectors and recommended

strategies for mitigation:
+ 1. Oracle logic

+ The project's reliance on Chainlink oracles introduces a risk of arbitrage opportunities that could be
exploited at the expense of depositor stakes. This vulnerability stems from the potential discrepancy
between the actual market price and the oracle-reported price.

- To mitigate this risk, it is crucial to implement a robust withdrawal function that can safeguard against
such arbitrage scenarios. This function should be designed to minimize the impact of price
discrepancies on withdrawals.

+ The selection of whitelisted tokens and corresponding oracles requires careful consideration to
prevent economically viable attacks. Such attacks could involve inflating the value of illiquid tokens to
mint themselves an excessive amount of RSETH, subsequently withdrawing valuable liquid assets like

native ETH or stETH from the pool.
+ 2. Deployment and update intervention
+ The deployment and update procedures, as currently designed, are susceptible to intervention by third

parties. Although the project has been successfully deployed without incident, there is still a need to

revise these processes to ensure they are conducted in a more secure, atomic manner.

MixBytes()

+ The addition of new asset tokens poses a risk of exposing the contract to intermediate states, as this
action is executed through multiple transactions. These states could potentially hinder the
functionality related to updating the RSETH price and managing the node delegator list within the
LRTDepositPool contract.

- 3. Token balance manipulation

+ The project's methodology for accounting rewards based on token balances opens the door to
manipulation through direct transfers. This includes the potential for artificially inflating the RSETH
rate via donations or other means, which is considered safe as much, and would be registered as
accumulated rewards.

+ The process for removing existing NodeDelegators and Strategies validates their balances being null.
This design allows third parties to block their removal by conducting direct transfers, thereby
maintaining a non-zero balance.

- Inflation attack is deemed infeasible due to the substantial existing total supply of the RSETH token
and the minimum deposit amount requirement set by governance. This measure restrains such
exploits by making them economically unviable.

+ 4. Centralization risks

+ The governance structure utilizes a 2/4 multisig account for the Manager role and a 3/5 multisig
account for the Admin role, with overlapping ownership and an additional address for the latter. This
setup, while robust, still presents centralization risks.

+ The Admin role possesses significant authority, including the ability to alter contract implementations,
designate RSETH minters and burners, and adjust crucial addresses within the LRTConfig contract. To
mitigate the risk of inadvertent disruptive actions by the Admin, the introduction of timelocks on
critical governance operations is recommended. Timelocks would provide a buffer period allowing for
the identification and correction of potential errors before they take effect.

- The Manager role was previously able to perform token transfers within the project and manage the
asset list, including the withdrawal of tokens, presenting a potential exploit risk. This issue has been
addressed by revoking certain privileges associated with this role.

- Transitioning governance to a DAO structure with embedded timelocks and community-driven
decision-making for crucial changes can significantly reduce centralization risks and enhance the

security.

« 5. ETH2 stealing with malicious validators

+ The risk of an ETH2 deposit theft via malicious validators exists, stemming from externally generated
validator deposit data. Although the project intends to employ KYC-verified validators, reducing the
likelihood of such attacks, the threat remains.

+ To fully exclude the risk of this concern, establishing a robust infrastructure that includes safeguards
against malicious validator activities is essential. This could involve enhanced validation processes
and security measures to protect user deposits.

MixBytes()

https://medium.com/immunefi/rocketpool-lido-frontrunning-bug-fix-postmortem-e701f26d7971

+ 6. General Project Architecture Review

+ The project incorporates pausable states from the Eigen Layer contracts, with a partial resolution
involving swaps within the DepositPool contract.

+ Updating the RSETH price function requires manual periodic activation to refresh reserve values. This
design choice limits scalability, as adding new node delegators and assets increases operational gas
costs.

+ The withdrawal mechanism is currently under development, with the detailed specifics of token
redemption processes yet to be clarified.

+ The multi-token pool mechanism equitably distributes rewards among users, irrespective of the
individual profitability of the strategies they participate in.

Addressing these vulnerabilities and concerns is crucial for the project's long-term viability and success.

Implementing the recommended changes will enhance the overall security of the project.

MixBytes()

2 .FINDINGS REPORT

2.1 Critical

Not Found
Excessive rights for the MANAGER role
Severity High
Status Fixed in 9ca0bb57
Description

The current system configuration grants the MANAGER role extensive rights giving its owner the possibility

to withdraw all the tokens from the contract. Specifically, the MANAGER is authorized to:

+ Swap the supported tokens within the LRTDepositPool. sol#[355.
+ Introduce new supported tokens to the LRTConfig.sol#L.60 contract.
- Setthe IPriceFetcher oracles to the LRTOracle sol#L93 for the supported tokens.

- Transfer assets from the NodeDelegator contracts to the NodeDelegator.sol#L.103.

Advantaging these permissions, a manager is able to add their own ERC-20 token and PriceFetcher for it to
the system, transfer all the available tokens from the NodeDelegator contracts to DepositorPool, and

then withdraw them using swapAssetWithinDepositPool.

While the MANAGER role acts as a sort of restricted administrative account, the fact that the MANAGER
and DEFAULT_ADMIN roles are separated is the evidence that, by design, this role is not considered to be

absolutely trustworthy.

Recommendation

We recommend revoking the access to call LRTConfig.addNewSupportedAsset,
LRTOracle.updatePriceOracleFor and LRTDepositPool.swapAssetWithinDepositPool from

the MANAGER role, confining such capabilities exclusively to the admin.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L355
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTConfig.sol#L60
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTOracle.sol#L93
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/NodeDelegator.sol#L103

An arbitrage opportunity in the rsETH price calculation for MANAGER role

Severity High
Status Fixed in 9caObb57
Description

There is an arbitrage opportunity for the MANAGER role using the swapAssetWithinDepositPool
function. Even if some MANAGER permissions are revoked, the permission to call

swapAssetWithinDepositPool is enough to perform profitable arbitrage.

Recommendation

For the multi-asset pools, we recommend using a collaterial-debt approach or AMM liquidity pool
approach. Using price oracles for determining the exchange rate within multi-asset pools is generally not
recommended.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4

Potential withdraw credentials overwritting by a malicious node operator

Severity High
Status Fixed in 630dc384
Description

While performing a stake into the EigenLayer NodeDelegator.sol#1.185, the Ether could be stolen.

The specification of ETH2.0 staking allows for two types of deposits: the initial deposit and the top-up
deposit, which increases the balance of a previously made initial deposit. Unfortunately, the current
implementation of the mainnet deposit contract does not sufficiently distinguish between these types of
deposits. This oversight allows an attacker to front-run a KelpDAQ's deposit with their own initial deposit
causing KelpDAQ's deposit to be treated as a top-up of the attacker's deposit. Consequently, KelpDAQO's

withdrawal credentials will be ignored, and the assets will be accounted for on behalf of the attacker.

This issue has been classified as high severity due to the potential for permanent loss of project liquidity.
The classification also takes into consideration the developers' statement that all validator nodes are
permissioned and have passed KYC, mitigating the overall risk assessment.

Recommendation

Even though this is an architectural issue of ETH2.0 itself, we recommend applying a workaround fix for
this issue.

bytes32 actualRoot = depositContract.get deposit root();
if (expectedDepositRoot !'= actualRoot) {
revert InvalidDepositRoot (actualRoot) ;

The expected deposit root can be calculated using appropriate offchain mechanics, ensuring that no initial
deposit was made to the given pubkey at the time of the expected deposit root calculation.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/630dc384658291300bb414a8116b2bdc3bc53ba7
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/NodeDelegator.sol#L185

The reward calculation may be blocked until contract upgrade

Severity High
Status Acknowledged
Description

Currently, the NodeDelegator.initiateWithdrawRewards () will NodeDelegator.sol#.232 if the
balance of the EigenPod exceeds 16 ETH. This is intended to distinguish between the staking rewards and

the stake withdrawal.

It is expected that rewards will be less than 16 ETH; otherwise, something unexpected has occurred (i.e.,
the validator initiated the withdrawal) and should be resolved manually. It is an ad-hoc temporary solution
that will require a contract upgrade by design.

This finding is rated HIGH as the reward calculation may be blocked until a manual contract upgrade.

Recommendation

We recommend developing and upgrading to a long-term solution that does not lead to the freezing of the

rewards.

Client's commentary

Blocking of reward doesn't cause any loss of funds. Later in our next upgrades we are building long

term solution, we will withdraw all rewards eth and build a better solution to accomplish this.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/blob/e75e9ef168a7b192abf76869977cd2ac8134849c/contracts/NodeDelegator.sol#L232

2.3 Medium

M-1 Potential blocking of removeNodeDelegatorContractFromQueue calls

Severity Medium
Status Acknowledged
Description

The issue is found in the LRTDepositPool.sol#L.263 function.

This function incorporates an internal verification to ensure the NodeDelegator expected to be removed
has a zero balance. However, this process opens up the possibility of the manipulation through front-
running, where an external party can send 1 wei of token to that NodeDelegator, thereby reverting the

execution of the removal process.

This vulnerability is classified as medium as it poses a risk to potentially blocking the removal process until

admin updates the proxy implementation.

Recommendation

We recommend pulling the tokens from the NodeDelegator at the time of removal.

Client's commentary

The fix encompasses only check whether the NDC has ETH staked in EL. We opted to use a private
RPC url that has a private pool when we see that there are frontrunning happening. The transaction

sent to a private pool rather than the public mempool would avoid this.

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L263

Potential arbitrage opportunity in the rsETH price calculation for the unpriveleged
users

Severity Medium

Status Acknowledged

Description

Due to the nature of the Chainlink price oracles, the upcoming price updates are predictable. Additionally,
the predictable price update can be forced by an attacker by calling the updateRSETHPrice function, which
is decentralized/unrestricted. It allows the attacker to predict a profitable price deviation and perform a

deposit, external DEX swap, or withdraw to get a guaranteed profit from their actions.

Currently, the withdraw functionality is not implemented, so we can't assess whether it would be safe or
not.

Recommendation

For the multi-asset pools, we recommend using a collaterial-debt approach or AMM liquidity pool
approach. Using price oracles for determining the exchange rate within multi-asset pools is generally not
recommended.

Client's commentary

1. We are not using chainlink.

2. Manager is using assets/oracles set by admin.

3. swapAssetWithinDepositPool is now swapAssetToETH removing the option to profit by a
malicious manager
Profiting updateRSETHPrice is not practical. Every single LST/LRT runs into this problem. The
reason this isn't a feasible attack is because of low staking rates. For example, at 3.5% ETH
staking rewards a year, exchange rate changes by < 0.01% every day.

4. To capture these rewards, users have to deploy a large amount of capital. This is the first
barrier. Kelp DAO is at $360M TVL today making this an extremely expensive attack.

5. Withdrawals (yet to be implemented) will impose unbonding period greater than 1 day. This
enforces a normalizing behavior on user deposits and withdrawals thereby removing any

incentive here.

MixBytes()

M-3 Potential yield stealing due to centralized oracle updates

Severity Medium
Status Acknowledged
Description

The centralized mechanism of the LRTOracle, which requires direct invocation of the
updateRSETHPrice function to register collected rewards, introduces a vulnerability that could enable

yield theft. The scenario unfolds as follows:

- Suppose the total supply of RSETH and the ETH equivalent locked in the project both stand at 1000. At
this point, the RSETH to ETH exchange rate equals 1:1.

- One of the events occurs where 1 ETH is donated to the pool or an equivalent amount of rewards is
distributed, or the price value of the locked tokens increases by 0.1%.

+ An attacker can exploit this minting 1000 RSETH for themself by depositing an equivalent of 1000 ETH
before the updateRSETHPrice transaction, thus capitalizing on the outdated exchange rate before the
rewards are recognized.

- Following the updateRSETHPrice call, the exchange rate adjusts to 1 RSETH per 1.005 ETH, resulting
ina 0.5 ETH profit for the attacker.

This issue is classified as medium due to its potential to permit unauthorized individuals to steal yield from

the pool.

Recommendation

We recommend using timelock of at least one week on the withdrawal process. Implementing such a
safeguard makes the described attack economically impractical due to impossibility to instantly redeem
the accrued yield.

Client's commentary

This attack is not practically feasible. It takes a great deal of capital, intent to grief to attempt this
attack. Despite that, a user inadvertantly locks their capital up for multiple days making this part of a
pooled staking deposit/withdraw behavior.

MixBytes()

M-4 Unsafe contract deployment and update process

Severity Medium
Status Acknowledged
Description

This issue is identified in the DeploylLRT s.sol scripts and in the history of deploy transactions [1], [2].

The deployment and update process for the TransparentUpgradeableProxy contracts is currently

made using two sequential transactions:

+ Update the proxy implementation

« Invoke the initialize function or an update routine.

This approach gives third parties an opportunity to intervene in the deployment or update phase,

potentially taking governance control over the deployed contracts.

Recommendation

We recommend utilizing the upgradeAndcall function introduced by EIP-1967 and passing the calldata

to the constructor of the proxy to udpate and initialize contracts using a single atomic transaction.

Client's commentary

The deployment scripts have no bearing to the contracts that are already deployed. To fix future

issues, we will make fixes in a future update.

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/script/foundry-scripts/DeployLRT.s.sol
https://etherscan.io/tx/0xf892b9a4e7566e3630103a60244d641ea7a6176a63663a78d1ffdf86859eac15
https://etherscan.io/tx/0x9b96b6956ec46895f6b81c261490ebdef9715cdf2aadd772b97d78f5451964a3

Lack of verification for the native ETH balance and staking balance in the

eigenPod
Severity Medium
Status Fixed in 026d228c

Description

There is a lack of verification for the native ETH balance and staking balance in the eigenPod within the
removeNodeDelegatorContractFromQueue function, potentially leading to the discrepancies of the

RSETH price.

Recommendation

We recommend checking zero balance during the removeNodeDelegatorContractFromQueue

function.

Client's commentary

Verification is paused on eigenlayer contracts since they launched, i.e. no one has verified yet. We

have confirmed this with EigenLayer.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/026d228ca4be89d2a5df74e0a0cbe291439824eb

Inconsistent support for a native ETH token

Severity Medium
Status Fixed in 9caObb57
Description

The current strategy for integrating the ETH support within the contract relies on usage of the native ETH,
as opposed to the use of the ERC20 interface for balance checks and transactions. Consequently, native
ETH is treated as an exceptional case, necessitating duplicate operations and the inclusion of a mocked

ETH address within the list of supported assets. This approach introduces several issues:

- The balance of the mocked token is verified in the LRTDepositPool sol#1.263 function.

- The isSupportedAsset check modifier is overlooked in several functions, including
LRTDepositPool.sol#L146, LRTDepositPool.sol#L.336, NodeDelegator.sol#L175.

« The LRTDepositPool.sol#1.348 function lacks native ETH support.

Recommendation

We recommend utilizing the WETH contract instead of native ETH to facilitate more polimorphic
architecture. This causes converting native ETH into WETH in the LRTDepositPool.depositETH
function and utilizing the WETH as a general ERC20 token, thereby eliminating the need for duplicate
functions and the inclusion of a mocked asset among the supported assets. Furthermore, for accurate
NodeDelegate.stakeETH processing, a WETH token can be unwrapped to the native ETH prior to its

transfer to the EigenPod and wrapped again upon withdrawal.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L263
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L146
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L336
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/NodeDelegator.sol#L175
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L348

M-7 Protocol functionality lockout upon adding a new token

Severity Medium
Status Acknowledged
Description

To add a supported token to the project, the administrator and manager have to call 3 different functions:

- addNewSupportedAsset() in LRTConfig
- updateAssetStrategy() in LRTConfig
+ updatePriceOracleFor() in LRTOracle

If the sequence of calls to these functions is contained in different transactions, the protocol is in an

intermediate state for some time, during which the updateRSETHPrice() function is blocked.

Recommendation

We recommend consolidating the mentioned functions into one and making the token addition procedure

atomic.

Client's commentary

Addition of newer assets are an infrequent occurence. While this causes minor incovenience to users,
asset additions are conducted professionaly by signers of admin and manager multisigs. We

anticipate little to none as impact because of asset addition.

MixBytes()

_ Centralization risks

Severity Medium
Status Acknowledged
Description

The project administrator and manager have unrestricted rights, including:

+ Contract code updates,

- Project configuration changes,

- Addition of an arbitrary number of RSETH minters (though minting capability is only used in
LRTDepositPool),

+ Oracle appointments.

These permissions pose centralization risks.

Recommendation

We recommend creating a DAO system with time-delayed execution of updates.

Client's commentary

Every single DeFi protocol out there runs on a select set of people being able to update/rewrite almost
all code. With Kelp, our ADMIN multisig is public and signers are public too. Our signers have started
other successful DeFi companies in the past. Since Kelp does not have a governance token yet, it is

too early for us to discuss the end state of governance here.

MixBytes()

The possible inability to initialize the eigenPod field

Severity Medium
Status Acknowledged
Description

The problem has been identified in the NodeDelegator.sol#L.185 function.

Invoking the stakeETH method prior to executing createEigenPod leads to an implicit deployment of
the eigenPod. However, this action fails to initialize its address within the NodeDelegator contract.
Consequently, it blocks the verifyWithdrawalCredentials and getETHEigenPodBalance
preventing accurate accounting of withdrawals and rewards derived from the ETH restaking in the pod.
This condition persists until admin intervenes to update the implementation of proxy with a function that
recovers the address.

This issue is classified as high due to the inability to initialize eigenPod, which may result in
discrepancies in the accounting of withdrawal and reward assets, affecting the RSETHPrice value.

Recovery from this state is feasible only through a proxy update.

Recommendation

We recommend initializaing the eigenPod field in the stakeETH function, if it is wasn't deployed earlier

explicitly using the createEigenPod call.

Client's commentary

Before validator keys could be generated, we need the EigenPod address. So there is no case we could
attribute a random validator key to a NDC without successfully passing offchain checks. Additionaly,

the suggested modification costs more gas.

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/NodeDelegator.sol#L185

The Ether can't be withdrawn from the NodeDelegator contract under certain
conditions

Severity Medium
Status Acknowledged
Description

If ETH TOKEN is not included in the list of supported assets, Ether can still be LRTDepositPool.sol#L352 to
the NDC using the transferETHToNodeDelegator function. However, it NodeDelegator.sol#L103 using

the transferBackToLRTDepositPool function.

Recommendation

We recommend checking the presence of ETH TOKEN in the supportedAssets list during the execution of
the sendETHFromDepositPoolToNDC function.

Client's commentary

We would add ETH_TOKEN as a part of upgrade process.
Even if someone sends ETH to NDC using transferETHToNodeDelegator or using normal eth transfer,

we are okay with ETH lying there in NDC.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/blob/e75e9ef168a7b192abf76869977cd2ac8134849c/contracts/LRTDepositPool.sol#L352
https://github.com/Kelp-DAO/LRT-rsETH/blob/e75e9ef168a7b192abf76869977cd2ac8134849c/contracts/NodeDelegator.sol#L103

2.4 Low

(| Using ERC20.transfer instead of SafeERC20.safeTransfer calls

Severity Low
Status Acknowledged
Description

Utilizing ERC20. transfer instead of SafeERC20.safeTransfer within the protocol is identified as a
security risk. This is due to the possibility for certain tokens to adopt non-standard variations of the
IERC20 interface, which do not return boolean values upon executing transfers. Additionally, the protocol's
swapAssetWithinDepositPool function currently omits the verification of return values from transfers.
Although the tokens currently whitelisted implement the standard ERC20 implementation, the protocol
does not accommodate a broader spectrum of TERC20 token variations, rendering it potentially

incompatible with certain tokens.

Recommendation

We recommend adopting the use of SafeERC20.safeTransfer throughout the implementation.

Client's commentary

We are using only LST which was created a year or so ago. They follow the correct ERC20 standard.
We feel that the safeERC20 lib would increase the gas use without much benefit. The benefit would be

if we used any ERC20 contract address or known tokens with this issue such as USDT.

MixBytes()

A risk of blocking the functionalities with whitelisting an invalid NodeDelegator
Oor Strategy

Severity Low
Status Acknowledged
Description

The incorporation of NodeDelegator into the LRTDepositPool thatis doesn't implement the
INodeDelegator interface or the Strategy to LRTConfig that is not whitelisted by the Eigen Layer
protocol's strategy list presents a risk of blocking the LRTOracle.RSETHPriceUpdate functions and

inability to remove these contracts from the added list due to require checks represented as view function
calls.

Recommendation

We recommend using the EIP-165 interface for the identification of contracts that implement the
NodeDelegator interface, and checking that the 1rtConfig of added NodeDelegator is the same as
the 1rtConfig of LRTDepositPool. Additionally, for the Strategy contracts, a validation process
should be implmented to ensure that a strategy proposed for addition has been authorized for deposits

within the StrategyManager.

Client's commentary

We appreciate the callout here but we believe Kelp DAO will perform validations and checks to ensure
contracts matching the right interface are deployed as Node Delegators. As an added security layer,

having fixed the Node removal logic, we are fairly certain bad NDCs can be removed.

MixBytes()

A potential race condition possibliity caused by the
removeNodeDelegatorContractFromQueue function

Severity Low
Status Acknowledged
Description

This issue is identified in the LRTDepositPool.sol#.317 and LRTDepositPool.sol#.336 functions of the

LRTDepositPool contract.

A race condition arises when the transferAssetToNodeDelegator(or
transferETHToNodeDelegator) and removeNodeDelegator functions are executed concurrently.
Specifically, if the removeNodeDelegator function is processed first, leading to the deletion of the
intended NodeDelegator for transfer, subsequent asset transfers via
transferAssetsToNodeDelegator could inadvertently be directed to another address. This issue
arises from the usage of the ndcIndex argument within the transferAssetToNodeDelegator and
transferEthToNodeDelegator functions, which can point to another NodeDelegator after the

deletion.

Recommendation

We recommend using an address as an argument of NodeDelegator expected to receive the transfer

instead of its index within the queue.

Client's commentary

RemoveNodeDelegatorContract and transfer funds are both functions of manager (a multisig with
multiple required signers). It is unlikely for this issue as describe to happen. We do not expect to

change code to address this issue.

MixBytes()

https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L317
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L336

L-4 A risk of admin rights revocation due to an incorrect LRTConfig address update

Severity Low
Status Fixed in 9caObb57
Description

The issue is identified in theLRTConfigRoleChecker.sol#L67 function.

There exists a potential risk when the admin rights could inadvertently be revoked through the updating of
the LRTConfig address with an incorrect address. Such a scenario may occur if the new address provided
does not correspond to an actual LRTConfig contract, thereby disrupting the functionality of all
operations dependent on the LRTConfig interface. Alternatively, if the new address is a valid LRTConfig
contract but configured with a different DEFAULT ADMIN address, the admin role would be transferred to

the holder of the new address.

Recommendation

We recommend eliminating the updateL.RTConfig function, as the LRTConfig contract is designed as

an UpgradeableProxy, direct changes of its address pose risks to the governance and protocol security.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/utils/LRTConfigRoleChecker.sol#L61

Removed NodeDelegator addresses from the LRTDepositPool queue cannot
be added again

Severity Low
Status Fixed in 9caObb57
Description

The issue is identified in the LRTDepositPool.sol#L.291 function.

The addNodeDelegatorContractToQueue function includes a verification step to ensure that a node
delegator already exists in the i sNodeDelegator mapping. If the mapping indicates presence, the
function skips adding the address back into the NodeDelegators list. This mechanism, while intended to
prevent duplicates, inadvertently creates a block against re-adding a node delegator once it has been
removed. The removeNodeDelegatorContractFromQueue function doesn't mark the address as
deleted in the mapping, thereby rendering its reintegration into the 1RTDepositPool impossible under the

current logic.

Recommendation

We recommend adjusting the removeNodeDelegatorContractFromQueue function to reset the

corresponding i sNodeDelegator mapping entry for the removed address to false.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4
https://github.com/Kelp-DAO/KelpDAO-contracts/blob/8c62af6057402f4616cc2a1d3218a277a864ee2c/contracts/LRTDepositPool.sol#L291

L-6 Excessive flexibility of LRTConfig

Severity Low
Status Acknowledged
Description

In addition to the ability to update contracts and change configuration addresses "on the fly" by calling
setters in the LRTConfig contract, there are mappings, such as tokenMap and contractMap, containing
token and contract addresses obtained from hashes declared in the LRTConstants contract. This

architecture is redundant and inefficient in terms of gas usage.

Using immutable variables (alongside upgradable contracts) instead of constants and mappings provides
greater gas efficiency, reduces code volume, and enhances readability.

Recommendation

We recommend using immutable variables instead of constants and mappings.

Client's commentary

Most functions on LRT Configs are callable by Admin which indicates the infrequent usage of these
functions. We appreciate the suggestion to follow another pattern for enhanced readability. We do not

believe there is a need to change any code in this file because of this suggestion.

MixBytes()

L-7 Event emission before executing the depositintoStrategy operation

Severity Low
Status Fixed in 9ca0bb57
Description

In the depositAssetintoStrategy() function, the AssetDepositintoStrategy event is emitted before the actual
execution of the depositintoStrategy operation. According to common rules, events should be emitted after

the execution of any operation.

Recommendation

We recommend swapping the emission of the AssetDepositintoStrategy event and the execution of the
depositintoStrategy function.

MixBytes()

https://github.com/Kelp-DAO/LRT-rsETH/commit/9ca0bb57f503c075f62c8df535c0f4953e1d23e4

L-8 Inability to remove tokens from the supported list

Severity Low
Status Acknowledged
Description

When adding a large number of tokens, the project may encounter gas limits when updating the oracle

price in updateRSETHPrice(), as this function iterates through all tokens.

Recommendation

We recommend adding a function to remove tokens from the system.

Client's commentary

We don't anticipate more than 10 assets in Kelp. This finding does not necessitate changes in Kelp's

code.

MixBytes()

5. ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We
build opensource solutions, smart contracts and blockchain protocols, perform security audits, work on

benchmarking and software testing solutions, do research and tech consultancy.

Contacts
O https://github.com/mixbytes/audits_public
27 W
[\ . .
https://mixbytes.io/
WSy Mesmiey

'v..‘ hello@mixbytes.io

https://twitter.com/mixbytes

MixBytes()

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://twitter.com/mixbytes

