I
asigma orme

KELP

June Upgrades
Security Assessment Report

Version: 2.1

June, 2025

Contents

Introduction 2
Disclaimer e e e e e e e e e e 2
Document Structure L e e e e e e 2
OVEIVIEW . . . e e e e e e e e e 2

Security Assessment Summary 3
SCOPE . . . e e e e e e e e 3
Approach e e e e 3
Coverage Limitations e e e 4
Findings Summary e e e e e e 4

Detailed Findings 5

Summary of Findings 6
Stale RSETH Price Referenced In Core Operations 7
Missing Role Assignments For LRTOracle v v v v v v i e e e e e e e e e e e 9
RSETH Minting Allowed During Paused State 11
Unrestricted Modification Of vestingStartTimestamp May Lead To Arithmetic Underflow 13
Misleading Price Event Emission RsETHPriceDecrease v v v v v v v v v v v v o v 15
Redundant Timestamp Initial Setting In verifyAndupdateClaim() 16

A Vulnerability Severity Classification 17

June Upgrades Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Kelp components in
scope.

The review focused solely on the security aspects of the Solidity implementation of the contracts, though general
recommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Prime
does not provide any guarantees relating to the function of the components in scope. Sigma Prime makes no
judgements on, or provides any security review, regarding the underlying business model or the individuals
involved in the project.

Document Structure

The first section provides an overview of the functionality of the Kelp components contained within the scope of
the security review. A summary followed by a detailed review of the discovered vulnerabilities is then given which
assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved sta-
tus and a recommendation. Additionally, findings which do not have direct security implications (but are poten-
tially of interest) are marked as informational.

The appendix provides additional documentation, including the severity matrix used to classify vulnerabilities
within the Kelp components in scope.

Overview

Kelp DAO is a liquid restaking protocol, building on top of EigenLayer. It gives users access to multiple benefits
such as staking and restaking rewards, DeFi and liquidity.

This review focuses on upgrades introduced in June 2025 at commit oc7eeas .

. .
Q@ sigmaprime Page | 2

June Upgrades Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the Kelp-DAO repository.
The scope of this time-boxed review was strictly limited to the following files at the commit diff d4f41e0..0c7eea5:

e FeeReceiver.sol ¢ NodeDelegatorHelper.sol

e L1Vaultsol e L2/RETHTokenWrapper.sol
e L1VaultV2.sol
e LRTConfig.sol

e RSETH.sol

o utils/HashStorage.sol
e LRTConverter.sol

e utils/WadMath.sol
e LRTDepositPool.sol
e LRTOracle.sol
e LRTUnstakingVault.sol

e LRTWithdrawalManager.sol * utils/LRTConstants.sol

o KERNEL/KernelTop100MerkleDistributor.sol

o utils/LRTConfigRoleChecker.sol

e NodeDelegator.sol o utils/UtilLib.sol

Note: third party libraries and dependencies were excluded from the scope of this assessment.

The fixes for the identified issues were assessed at PR-245.

Approach

The security assessment covered components written in Solidity.

The manual review focused on identifying issues associated with the business logic implementation of the con-
tracts. This includes their internal interactions, intended functionality and correct implementation with respect
to the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memory
layout).

Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-
patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibility
specifiers.

For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].

To support the Solidity components of the review, the testing team may use the following automated testing
tools:

e Aderyn: https://github.com/Cyfrin/aderyn
e Slither: https://github.com/trailofbits/slither

e Muythril: https://github.com/ConsenSys/mythril

. .
Q@ sigmaprime Page | 3

https://github.com/Kelp-DAO/KelpDAO-contracts/
https://github.com/Kelp-DAO/KelpDAO-contracts/compare/d4f51e03ae09155c39390a36b3b6d54f5928be25..0c7eea53ff434f7efb2bb27666d161dc3a2536c8
https://github.com/Kelp-DAO/KelpDAO-contracts/pull/245
https://github.com/Cyfrin/aderyn
https://github.com/trailofbits/slither
https://github.com/ConsenSys/mythril

June Upgrades Coverage Limitations

Output for these automated tools is available upon request.

Coverage Limitations

Due to the time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,
limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and any
related functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary
The testing team identified a total of 6 issues during this assessment. Categorised by their severity:

e High: 1 issue.
e Low: 3issues.

e Informational: 2 issues.

. .
Q@ sigmaprime Page | 4

June Upgrades Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Kelp components in scope.
Each vulnerability has a severity classification which is determined from the likelihood and impact of each issue
by the matrix given in the Appendix: Vulnerability Severity Classification.

A number of additional properties of the components, including optimisations, are also described in this section
and are labelled as “informational”.

Each vulnerability is also assigned a status:

e Open: the issue has not been addressed by the project team.

e Resolved: the issue was acknowledged by the project team and updates to the affected components(s) have
been made to mitigate the related risk.

e Closed: the issue was acknowledged by the project team but no further actions have been taken.

I . .
QT sigmaprime Page | 5

ID

KLP8-01
KLP8-02

KLP8-03
KLP8-04

KLP8-05

KLP8-06

Summary of Findings

Description Severity
Stale RSETH Price Referenced In Core Operations High
Missing Role Assignments For LRTOracle

RSETH Minting Allowed During Paused State

Unrestricted Modification Of vestingStartTimestamp May Lead To
Arithmetic Underflow

Misleading Price Event Emission RsETHPriceDecrease

Redundant Timestamp Initial Setting In verifyAndupdateClaim()

Status

Closed
Closed

Resolved
Resolved

Resolved

Resolved

June Upgrades Detailed Findings

KLP8-01 Stale RSETH Price Referenced In Core Operations

Asset LRTDepositPool.sol, LRTWithdrawalManager.sol

Status Closed: See Resolution

Rating Severity: High Impact: Medium Likelihood: High
Description

The deposit and withdrawal logic fails to ensure that RSETH pricing is up-to-date at the time of operation. This introduces
a temporal misalignment between the total value locked (TVL) and the token price used in minting or redemption
calculations, resulting in valuation inaccuracies and potential unfair outcomes for protocol participants.

The following functions are affected:

® | RTDepositPool.depositETH()

® |RTDepositPool.depositAsset()

LRTWithdrawalManager.initiateWithdrawal()

LRTWithdrawalManager.instantWithdrawal()

A typical exploitation scenario involves the protocol receiving additional ETH (e.g. from staking rewards or unsolicited
transfers), increasing the actual TVL. However, unless the RSETH price is manually updated, it remains stale. If users
deposit or withdraw during this window, they may receive incorrect RSETH quantities or asset allocations:

o Depositors might mint more RSETH than is fair based on outdated pricing.
o Withdrawers might redeem RSETH for more assets than appropriate.

o Arbitrageurs may exploit these windows for financial gain.

These inconsistencies compromise the integrity of the minting and redemption mechanisms and could lead to loss of
value for honest participants or misrepresentation of circulating supply.

This issue is rated as medium impact because it does not result in direct unauthorised asset transfers or control over
protocol state. However, it is of high likelihood, as price updates are manual and subject to delays, creating frequent
opportunities for exploitation in normal operation or during reward accrual periods.

Recommendations

Perform price updates by calling LRTOracle.updateRSETHPrice() before initiating any deposits or withdrawals.

Resolution

The finding has been closed with the following comment from the development team:

I . .
QT sigmaprime Page | 7

June Upgrades Detailed Findings

“It is a design choice. If we allow a user to inadvertently deposit into the protocol and at the same time call the
update price function, it will cause more harm. The user could have their transaction cost (increase) from a 2 dollar
to a 30 dollar transaction. It would be detrimental to small users. We are confident that the architecture choice

we made is best for the protocol."

1. .
@ sigmaprime Page | 8

June Upgrades Detailed Findings

KLP8-02 Missing Role Assignments For LRTOracle

Asset LRTOracle.sol

Status Closed: See Resolution

Rating Severity: Low Impact: Medium Likelihood: Low
Description

The deployed configuration fails to assign the required privileges to the LRTOracle contract, preventing it from execut-
ing critical operations such as pausing the system during emergencies and minting protocol fees. This misconfiguration
can lead to silent failures, undermining safety mechanisms and core protocol behaviour.

Within updateRSETHPrice() , the oracle is designed to safeguard the system by pausing deposits and withdrawals when
a significant price drop is detected:

if (isPriceDecreaseOffLimit) {
IPausable(lrtConfig.getContract(LRTConstants.LRT_DEPOSIT_POOL)).pause();
IPausable(lrtConfig.getContract(LRTConstants.LRT_WITHDRAW_MANAGER)).pause();
return;

However, these pause() calls will revert at runtime because the LRTOracle contract lacks the PAUSER_ROLE required
to perform them. As a result, the intended emergency mechanism becomes non-functional, potentially leaving the
protocol vulnerable during severe market volatility.

Additionally, the same function attempts to mint protocol fees in the form of RSETH when new ETH is detected in the
system:

if (rsethAmountToMintAsProtocolFee > o) {
IRSETH(rsETHTokenAddress).mint(
lrtConfig.getContract(LRTConstants.PROTOCOL_TREASURY),
rsethAmountToMintAsProtocolFee

);

This minting operation requires the MINTER_ROLE , which has also not been granted to the oracle. Without it, protocol
fees will not be distributed as intended, silently breaking a key economic function and potentially affecting treasury
funding.

Recommendations

Ensure that the LRTOracle contract is granted the following roles during deployment or initialisation:

1. PAUSER_ROLE on both the LRTDepositPool and LRTWithdrawalManager contracts, to enable emergency halts
during price shocks.

2. MINTER_ROLE on the RSETH token contract, to allow correct distribution of protocol fees.

1. .
Q@ sigmaprime Page | 9

June Upgrades Detailed Findings

Resolution

The development team have acknowledged the issue and determined that no fix is needed as all roles are assigned
correctly in a production setting on the ETH mainnet.

1. .
@ sigmaprime Page | 10

June Upgrades Detailed Findings

KLP8-03 RrseTH Minting Allowed During Paused State

Asset LRTOracle.sol

Status Resolved: See Resolution

Rating Severity: Low Impact: Medium Likelihood: Low
Description

The system exhibits inconsistent behaviour during emergency scenarios triggered by sharp price declines. While core
protocol operations are correctly paused to prevent potentially unsafe user interactions, fee minting logic remains
active, allowing the protocol to continue issuing new tokens even while in a paused state.

When the updateRSETHPrice() function detects a critical drop in price, it correctly triggers an emergency pause by
invoking the pause() function on both the deposit and withdrawal contracts:

if (isPriceDecreaseOffLimit) {
IPausable lrtDepositPool = IPausable(lrtConfig.getContract(LRTConstants.LRT_DEPOSIT_POOL));
IPausable withdrawalManager = IPausable(lrtConfig.getContract(LRTConstants.LRT_WITHDRAW_MANAGER));
lrtDepositPool.pause();
withdrawalManager.pause();
return;

However, if ETH is subsequently donated to the protocol (thereby increasing the total value locked), the same
updateRSETHPrice() function continues executing logic that calculates a protocol fee based on the change in ETH
balance:

if (totalETHInProtocol > previousTVL) {
uint256 rewardAmount = totalETHInProtocol - previousTVL;
protocolFeeInETH = (rewardAmount * lrtConfig.protocolFeeInBPS()) / _ooe;

It then mints new RSETH to the protocol treasury despite the system being in a paused state:

if (protocolFeeInETH > o) {
// Calculate rsETH amount to mint as protocol fee
uint256 rsethAmountToMintAsProtocolFee = protocolFeeInETH.divWad(newRsETHPrice);

// rest of code

if (rsethAmountToMintAsProtocolFee > @) {
address treasury = lrtConfig.getContract(LRTConstants.PROTOCOL_TREASURY);
IRSETH(rsETHTokenAddress).mint(treasury, rsethAmountToMintAsProtocolFee);
emit FeeMinted(treasury, rsethAmountToMintAsProtocolFee);

This behaviour is problematic because it undermines the emergency pause mechanism. The intention behind pausing is
to halt all sensitive operations during volatile market conditions. Continuing to mint RSETH during such times may erode
confidence in the pause mechanism, create accounting inconsistencies, or allow strategic manipulation of protocol
parameters.

I . .
@ sigmaprime Page | 11

June Upgrades Detailed Findings

Recommendations

Incorporate explicit checks within updateRSETHPrice() to ensure that protocol fee minting is only performed when
the system is fully active. If either the deposit pool or the withdrawal manager is paused, fee minting should be skipped
to preserve operational consistency and uphold the intended effects of the emergency pause.

Resolution

The finding was addressed in PR-245.

1. .
@ sigmaprime Page | 12

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/245

June Upgrades Detailed Findings

KLP8-04 Unrestricted Modification Of vestingStartTimestamp May Lead To Arithmetic Underflow

Asset KernelTopieeMerkleDistributor.sol

Status Resolved: See Resolution

Rating Severity: Low Impact: Medium Likelihood: Low
Description

The function setVestingStartTimestamp() allows the owner to update the vestingStartTimestamp at any time with-
out verifying if vesting has already begun:

function setVestingStartTimestamp(uint256 _vestingStartTimestamp) external onlyOwner {
if (_vestingStartTimestamp == o) {
revert ZeroValueProvided();
}
vestingStartTimestamp = _vestingStartTimestamp;
emit VestingStartTimestampSet(vestingStartTimestamp);

If the vesting start timestamp is changed after some vesting has already occurred, previously claimed amounts will no
longer align with the updated vesting schedule. For example:

. Vesting begins on Day 3.
. A user successfully claims tokens on Day 5.

. On Day 6, the owner resets vestingStartTimestamp to Day 6.

A WO N P

. When the same user attempts to claim again on Day 7, the system calculates the vested amount based only on
the interval from Day 6 to Day 7. However, the user’s previous claim was based on the original Day 3 to Day 5
vesting window.

This mismatch can cause the calculation of unclaimedAmount to underflow:

uint256 unclaimedAmount = totalVestedAmount - userClaim.amountClaimed;

In this case, totalVestedAmount is recalculated from the new start time (Day 6), while userclaim.amountClaimed
still reflects the earlier vesting (Day 3 to Day 5), resulting in an arithmetic underflow and transaction revert.

Recommendations

Update the implementation of setVestingStartTimestamp() to include the following safeguards:

1. Reject any modification if vesting has already commenced, by ensuring the current block timestamp is less than
the existing vestingStartTimestamp .

2. Ensure that the new vesting start time is not in the past relative to the current block timestamp, to avoid retroac-
tive schedule manipulation.

1. .
@ sigmaprime Page | 13

June Upgrades Detailed Findings

Resolution

The finding was addressed in PR-245.

1. .
@ sigmaprime Page | 14

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/245

June Upgrades Detailed Findings

KLP8-05 Misleading Price Event Emission RsETHPriceDecrease

Asset LRTOracle.sol

Status Resolved: See Resolution

Rating Informational
Description

The updateRSETHPrice() function emits a RsETHPriceDecrease event whenever the new price is below the historical
highest price, regardless of whether the price has actually decreased from its previous value:

if (newRsETHPrice < highestRsethPrice) {
uint256 diff = highestRsethPrice - newRsETHPrice;
// normalizing to 1e18
bool isPriceDecreaseOffLimit =
pricePercentagelimit > o Eﬂ diff > pricePercentagelLimit.mulWad(highestRsethPrice);

emit RsETHPriceDecrease(highestRsethPrice, newRsETHPrice);

// rest of code

The event name suggests an absolute price drop, but it even triggers in scenarios when the price has actually increased
from its previous value but simply has not surpassed the all-time high. This naming convention could mislead monitoring
systems or users interpreting the price trends

Recommendations

To improve accuracy and clarity, it is recommended to consider either:

1. Renaming the event to better reflect its actual purpose (e.g., RsETHPriceBelowPeak)

2. Implementing separate events to distinguish between:

e Actual price decreases

e Price increases that remain below historical highs

Resolution

The finding was addressed in PR-245.

1. .
@ sigmaprime Page | 15

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/245

June Upgrades Detailed Findings

KLP8-06 Redundant Timestamp Initial Setting In verifyAndupdateclaim()

Asset KernelTopieeMerkleDistributor.sol

Status Resolved: See Resolution

Rating Informational
Description

In the KERNEL token claiming process, the function verifyAndUpdateClaim() includes logic that sets
lastClaimTimestamp to vestingStartTimestamp if itis zero:

if (userClaim.lastClaimTimestamp == o) {
userClaim.lastClaimTimestamp = vestingStartTimestamp;

}

However, this setting is redundant because the function _getUnclaimedVestedAmount() already handles this edge case
by defaulting to vestingStartTimestamp when lastClaimTimestamp is zero:

uint256 startTime = userClaim.lastClaimTimestamp > o i userClaim.lastClaimTimestamp : vestingStartTimestamp;

Recommendations

To improve code efficiency and reduce redundancy, the initial timestamp check in verifyAndupdateClaim() should be
removed, as _getUnclaimedVestedAmount() already ensures the correct start time is used.

Resolution

The finding was addressed in PR-245.

1. .
@ sigmaprime Page | 16

https://github.com/Kelp-DAO/KelpDAO-contracts/pull/245

June Upgrades Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The total
severity of a vulnerability is derived from these two metrics based on the following matrix.

High Critical

Medium

Impact

High

Low

Low Medium High

Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of a
vulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-
cessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

I . .
QT sigmaprime Page | 17

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Stale RSETH Price Referenced In Core Operations
	Missing Role Assignments For LRTOracle
	RSETH Minting Allowed During Paused State
	Unrestricted Modification Of vestingStartTimestamp May Lead To Arithmetic Underflow
	Misleading Price Event Emission RsETHPriceDecrease
	Redundant Timestamp Initial Setting In verifyAndUpdateClaim()

	Vulnerability Severity Classification

