I
asigma orme

KELP DAO

PEPE Upgrade Integration
Security Assessment Report

Version: 2.0

September, 2024

Contents

Introduction
Disclaimer
Document Structure L.
Overview o e e e

Security Assessment Summary
Scope e e e
Approach
Coverage Limitations
Findings Summary

Detailed Findings

Summary of Findings
Malicious Validator Front-Running Attack

Lost Funds After EigenLayer Operator-Initiated Undelegations
Frozen Withdrawal Due To Wrong ETH Address In completeUnstaking()
Incorrect getETHEigenPodBalance() Calculation Can Overinflate TVL

unlockQueue() is Susceptible To Asset Price Manipulation
FeeReceiver Balance Is Not Included InTVL

Incorrect stakedButUnverifiedNativeETH Accounting Can Overinflate TVL
incrementExtraStakeToReceive() Can Block Verifying Withdrawal Credentials

unlockQueue() Potentially Uses Outdated rseTH Price . .
Lack Of Precision In pricePercentageLimit
LRTOracle Does Not Check Decimals
Miscellaneous General Comments

A Test Suite

B Vulnerability Severity Classification

PEPE Upgrade Integration Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Kelp DAO smart con-
tracts in scope. The review focused solely on the security aspects of the Solidity implementation of the contract,
though general recommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Prime does
not provide any guarantees relating to the function of the smart contract. Sigma Prime makes no judgements
on, or provides any security review, regarding the underlying business model or the individuals involved in the
project.

Document Structure

The first section provides an overview of the functionality of the Kelp DAO smart contracts contained within
the scope of the security review. A summary followed by a detailed review of the discovered vulnerabilities
is then given which assigns each vulnerability a severity rating (see Vulnerability Severity Classification), an
open/closed/resolved status and a recommendation. Additionally, findings which do not have direct security im-
plications (but are potentially of interest) are marked as informational.

Outputs of automated testing that were developed during this assessment are also included for reference (in the
Appendix: Test Suite).

The appendix provides additional documentation, including the severity matrix used to classify vulnerabilities
within the Kelp DAO smart contracts in scope.

Overview

Kelp is a liquid restaking protocol built on top of EigenLayer. It allows users to deposit ETH or other EigenLayer-
supported tokens to receive rseTH, Kelp's liquid restaking token.

This security assessment focused on upgrades to Kelp’s smart contracts required to support EigenLayer's EigenPod
PEPE upgrade.

. .
Q@ sigmaprime Page | 2

PEPE Upgrade Integration Security Assessment Summary

Security Assessment Summary

Scope

The review was conducted on the files hosted on the KelpDAO-contracts repository.
The scope of this time-boxed review was strictly limited to the diff between commits 43da3e4 and db8ae4e.

Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The manual review focused on identifying issues associated with the business logic implementation of the con-
tracts. This includes their internal interactions, intended functionality and correct implementation with respect
to the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memory
layout).

Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-
patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibility
specifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

e Mythril: https://github.com/ConsenSys/mythril

e Slither: https://github.com/trailofbits/slither

e Surya: https://github.com/ConsenSys/surya

e Aderyn: https://github.com/Cyfrin/aderyn

Output for these automated tools is available upon request.

Coverage Limitations

Due to the time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,
limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and any
related functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary
The testing team identified a total of 12 issues during this assessment. Categorised by their severity:

e High: 3 issues.

e Medium: 5 issues.

. .
Q@ sigmaprime Page | 3

https://github.com/Kelp-DAO/KelpDAO-contracts
https://github.com/Kelp-DAO/KelpDAO-contracts/compare/43da3e448d117a1e68ce93f7a53107afa712b76a...db8ae4e4e5dcf20c16d15ab453fa4ea9fcbd3039
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/43da3e448d117a1e68ce93f7a53107afa712b76a
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/db8ae4e4e5dcf20c16d15ab453fa4ea9fcbd3039
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya
https://github.com/Cyfrin/aderyn

PEPE Upgrade Integration Findings Summary

e Low: 1 issue.

e Informational: 3 issues.

I . .
QT sigmaprime Page | 4

PEPE Upgrade Integration Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Kelp DAO smart contracts
in scope. Each vulnerability has a severity classification which is determined from the likelihood and impact of
each issue by the matrix given in the Appendix: Vulnerability Severity Classification.

A number of additional properties of the contracts, including gas optimisations, are also described in this section
and are labelled as “informational”.

Each vulnerability is also assigned a status:

e Open: the issue has not been addressed by the project team.

e Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) have
been made to mitigate the related risk.

e Closed: the issue was acknowledged by the project team but no further actions have been taken.

I . .
QT sigmaprime Page | 5

Summary of Findings

ID Description Severity Status
KLP2-01 Malicious Validator Front-Running Attack High Resolved
KLP2-02 Lost Funds After EigenLayer Operator-Initiated Undelegations High Resolved
KLP2-03 Frozen Withdrawal Due To Wrong ETH Address In completeunstaking() High Resolved
KLP2-04 Incorrect getETHEigenPodBalance() Calculation Can Overinflate TVL Resolved
KLP2-05 unlockqQueue() is Susceptible To Asset Price Manipulation Resolved
KLP2-06 FeeReceiver Balance Is Not Included In TVL Closed
KLP2-07 !P\?cl_)rrect stakedButUnverifiedNativeETH Accounting Can Overinflate Closed
KLP2-08 ér;x:[rie;zntExtraStakeToReceive() Can Block Verifying Withdrawal Cre- Resolved
KLP2-09 unlockqueue() Potentially Uses Outdated rsETH Price Closed
KLP2-10 Lack Of Precision In pricePercentagelLimit Closed
KLP2-11 LRrToracle Does Not Check Decimals Resolved
KLP2-12 Miscellaneous General Comments Resolved

PEPE Upgrade Integration Detailed Findings

KLP2-01 Malicious Validator Front-Running Attack

Asset NodeDelegator.sol

Status Resolved: See Resolution

Rating Severity: High Impact: High Likelihood: Medium
Description

The Kelp team currently stakes validators on the beacon chain using the stake32Eth() function, which is vulnerable
to front-running attacks that allow the node operator to steal the staked ETH from Kelp.

Staking protocols, such as Kelp, that rely on third-party node operators are vulnerable to a front-running attack, which
allows the node operator to steal the staked ETH from Kelp.

The attack originates from the fact that the withdrawal credentials contained within the deposit data are ignored if
the deposit is a top-up for an existing validator on the beacon chain. This can be seen in the consensus specs in the
apply_deposit() function:

def apply_deposit(state: BeaconState,
pubkey: BLSPubkey,
withdrawal_credentials: Bytes32,
amount: uinté6s,
signature: BLSSignature) -> None:
validator_pubkeys = [v.pubkey for v in state.validators]
if pubkey not in validator_pubkeys:
Verify the deposit signature (proof of possession) which is not checked by the deposit contract
deposit_message = DepositMessage(
pubkey=pubkey,
withdrawal_credentials=withdrawal_credentials,
amount=amount,

)

domain = compute_domain(DOMAIN_DEPOSIT) # Fork-agnostic domain since deposits are valid across forks
signing_root = compute_signing_root(deposit_message, domain)
if bls.Verify(pubkey, signing_root, signature):
add_validator_to_registry(state, pubkey, withdrawal_credentials, amount)
else:
Increase balance by deposit amount
@audit “withdrawal_credentials ™ are not checked
index = ValidatorIndex(validator_pubkeys.index(pubkey))
increase_balance(state, index, amount)

Since the withdrawal credentials are not checked for existing validators, a malicious node operator can add the validator
to the beacon chain themselves, supplying their own address as the withdrawal credentials with a small 1 ETH deposit.

An LRT operator who stakes 32 ETH for this validator will have that ETH stolen since the validator's withdrawal cre-
dentials will be set to the node operator's address instead of the EigenPod.

The NodeDelegator::stake32Ethvalidated() function checks the expectedDepositRoot to prevent front-running at-
tacks in the same block as shown below:

bytes32 actualDepositRoot = depositContract.get_deposit_root();
if (expectedDepositRoot != actualDepositRoot) {
revert InvalidDepositRoot(expectedDepositRoot, actualDepositRoot);

}

I . .
QT sigmaprime Page | 7

PEPE Upgrade Integration Detailed Findings

However, a malicious node operator can still add the validator to the beacon chain many blocks in advance to perform
the attack, as offchain checks are not performed to ensure that there are no previous deposits to the same validator
public key.

Recommendations

In conjunction with using the stakes2tthvalidated() function, perform offchain checks to ensure that there have been
no previous deposits to the same validator public key on the beacon chain, such that it is verified that the validator
does not exist on the beacon chain before the NodeDelegator deposit is processed.

To check that the validator does not already exist on the beacon chain, query the beacon chain for the validator's

pubkey. To check for pending deposits up to the expectedbepositRoot , check the emitted logs from the beacon chain
deposit contract.

Resolution

The Kelp team has acknowledged this issue and will use stake32Ethvalidated() and offchain checks to prevent front-
running attacks as recommended above. The offchain checks were out of scope for this review and were not verified
by Sigma Prime.

1. .
@ sigmaprime Page | 8

PEPE Upgrade Integration Detailed Findings

KLP2-02 Lost Funds After EigenLayer Operator-Initiated Undelegations

Asset NodeDelegator.sol

Status Resolved: See Resolution

Rating Severity: High Impact: High Likelihood: Medium
Description

If the EigenLayer operator that the NodeDelegator is delegated to undelegates the NodeDelegator through
DelegationManager , the total ETH in protocol will be misrepresented and the queued withdrawal will be stuck.

EigenLayer's DelegationManager::undelegate() allows operators to undelegate a staker that is delegated to them.

Since this undelegation is not executed through NodeDelegator::undelegate() , it bypasses Kelp's internal accounting
in NodeDelegator::undelegate() and fails to call LRTUnstakingVault::addSharesUnstaking() as shown below:

function undelegate() external whenNotPaused onlyLRTManager {
Y oao
for (uint256 i = @; i < strategies.length;) {
if (beaconChainETHStrategy == address(strategies[i])) {
lrtUnstakingVault.addSharesUnstaking(LRTConstants.ETH_TOKEN, shares[il);
} else {
address token = address(strategies[i].underlyingToken());
lrtUnstakingVault.addSharesUnstaking(token, shares[il);

As sharesUnstaking is not incremented after the undelegation, there are two impacts:

1. The queued withdrawal cannot be completed due to a revert caused by the underflow of sharesunstaking when
calling lrtUnstakingVault.reduceSharesUnstaking() - withdrawing funds cannot be recovered

2. The strategy shares in the queued withdrawal do not count to the protocol's total ETH - the rseTH price can be
manipulated

Recommendations

To recover the stuck withdrawing funds, create a function in LRTUnstakingvault that allows an LRT operator to in-
crease sharesUnstaking by registering queued withdrawals. To prevent the double counting of shares, ensure that

withdrawals can only only be registered once and that NodeDelegator::initiateUnstaking() also registers queued
withdrawals.

To prevent the manipulation of the rseTH price, create a circuit breaker that prevents the rseTH price from being
updated when an operator has undelegated a staker by checking DelegationManager::delegatedTo() against
NodeDelegator: :elOperatorDelegatedTo() . Ensure that when the queued withdrawal is registered to LRTUnstakingVault ,

I . .
QT sigmaprime Page | 9

PEPE Upgrade Integration Detailed Findings

the eloperatorDelegatedTo is reset to zero so that the rseTH price can be updated after the price manipulation risk
has been mitigated.

Resolution

Queued withdrawals are now tracked in LRTUnstakingvault and a circuit breaker has been added to pause price up-
dates, deposits, and rsETH withdrawals when there are untracked EigenlLayer withdrawals.

This issue has been resolved in commit 38c2f47.

1. .
@ sigmaprime Page | 10

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/38c2f47b7997a568ce6dc992bfd748efc2ed5f58

PEPE Upgrade Integration Detailed Findings

KLP2-03 Frozen Withdrawal Due To Wrong ETH Address In completeUnstaking()

Asset NodeDelegator.sol

Status Resolved: See Resolution

Rating Severity: High Impact: High Likelihood: Medium
Description

If an asset is incorrectly set to match the beaconChainETHStrategy in the completeUnstaking() function, this asset
cannot be withdrawn afterwards.

EigenLayer's DelegationManager contract ignores the inputted asset address when completing a withdrawal for
beaconChainETHStrategy , allowing any asset address to be set inits place. If an LRT operator accidentally or maliciously
sets the asset address to another asset with a pending withdrawal in completeUnstaking() , that asset will have its
sharesUnstaking mapping reduced in LRTUnstakingVault :

for (uint256 i = @; i < assetCount;) {
lrtUnstakingVault.reduceSharesUnstaking(address(assets[i]), withdrawal.shares[i]);
if (receiveAsTokens) {
if (address(beaconChainETHStrategy) != address(withdrawal.strategies[i])) {
balancesBefore[i] = assets[i].balanceOf(address(this));
} else {
balancesBefore[i] = address(this).balance;

H

H

unchecked {
i+4;

}

This will cause sharesUnstaking to revert due to an underflow when trying to complete the withdrawal for that asset,
causing the withdrawal to be stuck.

Recommendations

In completeUnstaking() , reduce sharesin LRTConstants.ETH_TOKEN for beaconChainETHStrategy instead of usingthe
inputted assets array.

for (uint256 i = @; i < assetCount;) {
if (address(beaconChainETHStrategy) != address(withdrawal.strategies[i])) {
lrtUnstakingVault.reduceSharesUnstaking(LRTConstants.ETH_TOKEN, withdrawal.shares[i]);
} else {
lrtUnstakingVault.reduceSharesUnstaking(address(assets[i]), withdrawal.shares[i]);
H
Y oao

I . .
Q sigmaprime Page | 11

PEPE Upgrade Integration Detailed Findings

Resolution

The Kelp team has addressed the issue as recommended above in commit 1ad2f28.

1. .
@ sigmaprime Page | 12

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/1ad2f28249c218d47eedcff801de9d38f7f07b14

PEPE Upgrade Integration Detailed Findings

KLP2-04 Incorrect getETHEigenPodBalance() Calculation Can Overinflate TVL

Asset NodeDelegator.sol, LRTDepositPool.sol

Status Resolved: See Resolution

Rating Severity: Medium Impact: Medium Likelihood: Medium
Description

The getETHEigenPodBalance() function can incorrectly return O when there is a pod shares deficit in EigenLayer's
EigenPodManager contract, leading to the protocol's calculated TVL being overinflated, as shown below:

/// @dev Returns the amount of eth staked in eigenlayer through this ndc

function getETHEigenPodBalance() external view override returns (uint256 ethStaked) {
IEigenPodManager eigenPodManager = IEigenPodManager(lrtConfig.getContract(LRTConstants.EIGEN_POD_MANAGER));
int256 nativeEthShares = eigenPodManager.podOwnerShares(address(this));

if (nativeEthShares < o) {
// native eth shares are negative due to slashing and queue of more amount of eth withdrawal
uint256 nativeEthSharesDeficit = uint256(-nativeEthShares);
if (nativeEthSharesDeficit > stakedButUnverifiedNativeETH) {
// @audit This incorrectly returns o
return o;
} else {
return stakedButUnverifiedNativeETH - nativeEthSharesDeficit;
H
H

return stakedButUnverifiedNativeETH + uint256(nativeEthShares);

This means that it is possible for a NodeDelegator to portray an overinflated balance in
LRTDepositPool::getTotalAssetDeposits() if it has a queued withdrawal and has been slashed.

Consider the scenario where there is 1 NodeDelegator with 1 validator verified on EigenPod and no unverified val-
idators:

initial state: podOwnerShares = 32, stakedButUnverifiedNativeETH = o, queuedShares = o

queue withdrawal
for 32 shares: podOwnerShares = o , stakedButUnverifiedNativeETH = o, queuedShares = 32

validator gets slashed
for 16 ETH: podOwnerShares = -16, stakedButUnverifiedNativeETH = o, queuedShares = 32
In the scenario above, LRTDepositPool::getTotalAssetDeposits() for ETH will return 32 ETH as the pod shares deficit

is ignored when nativeEthSharesDeficit > stakedButUnverifiedNativeETH .

Recommendations

Account for the pod shares deficit by returning an int2s56 in getETHEigenPodBalance() . The potential negative value
can be handled further up the call stack in LRTDepositPool::getTotalAssetDeposits() and

1. .
@ sigmaprime Page | 13

PEPE Upgrade Integration Detailed Findings

LRTDepositPool::getETHDistributionData() .

Resolution

The Kelp team has addressed the issue as recommended above in commit 1c2e477.

1. .
@ sigmaprime Page | 14

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/1c2e47729a70d321503986bf550d75de6726986b

PEPE Upgrade Integration Detailed Findings

KLP2-05 unlockqueue() is Susceptible To Asset Price Manipulation

Asset LRTWithdrawalManager.sol

Status Resolved: See Resolution

Rating Severity: Medium Impact: Medium Likelihood: Medium
Description

The function unlockqQueue() only checks for minimum prices and hence is vulnerable to price manipulation.
The unlockQueue() function enforces a minimum rseTH and asset price as follows:

if (rsETHPrice < minimumRsEthPrice) revert RsETHPriceMustBeGreaterMinimum(rsETHPrice);
if (assetPrice < minimumAssetPrice) revert AssetPriceMustBeGreaterMinimum(assetPrice);

The minimum prices are provided by the LRT operator when calling unlockQueue() , and are used to prevent with-
drawals from being processed with manipulated prices.

However, this does not fully protect against price manipulation. If the assetPrice is manipulated to be a lot higher
than intended, then withdrawals will end up with a significantly smaller payout, since _calculatePayoutAmount() takes
the minimum of request.expectedAssetAmount and newAssetAmount :

function _calculatePayoutAmount(
WithdrawalRequest storage request,
uint256 rsETHPrice,
uint256 assetPrice
private
view

returns (uint256)

uint256 currentReturn = (request.rsETHUnstaked * rsETHPrice) / assetPrice;
return (request.expectedAssetAmount < currentReturn) i request.expectedAssetAmount : currentReturn;

Recommendations

Instead of checking for minimum prices, the unlockQueue() function should check for expected prices for the rseTH
and asset. The function should revert if the actual prices fall out of a set range from the expected prices.

Resolution

Maximum asset and rseTH price limits have been added to prevent price manipulation in the positive direction.

This issue has been resolved in commit 5bé64c4d.

1. .
@ sigmaprime Page | 15

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/5b64c4df5ae03b8595984af95a713813462d444b

PEPE Upgrade Integration Detailed Findings

KLP2-06 Feereceiver Balance Is Not Included In TVL

Asset LRTDepositPool.sol

Status Closed: See Resolution

Rating Severity: Medium Impact: Low Likelihood: High
Description

The getETHDistributionData() function does not count the FeeReceiver contract's ETH balance, resulting in the
rsETH price being smaller than intended.

Any execution layer rewards that are in the FeeReceiver contract are not included in the protocol's total ETH balance
until the funds are sent to the LRTDepositPool viathe FeeReceiver::sendFunds() function.

This creates a delay in the total ETH balance and, subsequently, the rseTH price. This will result in a pricing inefficiency
that can be exploited by MEV searchers who can deposit into LRTDepositPool for a discount, and withdraw after the

rewards have been accounted to the rseTH price.

This issue has a low impact as the FeeReceiver ETH balance only represents a small fraction of the total ETH in the
protocol. Furthermore, MEV searchers are deterred from performing the arbitrage as they incur extra risk by waiting
for the withdrawal delay in LRTwithdrawalManager . However, depending on market conditions and liquidity, the MEV

searchers may perform the arbitrage on secondary markets, resulting in negative sell pressure on rsgTH .

Recommendations

Include the FeeReceiver ETH balance in getETHDistributionData() so that the protocol's total ETH balance is more
accurate, resulting in precise rseTH price.

Resolution

The Kelp team has acknowledged the issue with the following comment:

We currently use offchain automation to send the funds from the FeeReceiver tothe LRTDepositPool . We will
implement the recommended fix in the next upgrade.

1 . .
QT sigmaprime Page | 16

PEPE Upgrade Integration Detailed Findings

KLP2-07 Incorrect stakedButUnverifiedNativeETH Accounting Can Overinflate TVL

Asset NodeDelegator.sol

Status Closed: See Resolution

Rating Severity: Medium Impact: Medium Likelihood: Medium
Description

There are multiple possible attack paths involving stakedButUnverifiedNativeETH that cause staked ETH in validators
to be double counted, overinflating the total ETH in the protocol and rseTH exchange rate. These attack paths are
listed below:

1. Staking 32 ETH into a validator more than once.

2. Staking ETH into a validator and exiting the validator from the beacon chain without verifying withdrawal cre-
dentials on EigenPod.

In stake32Eth() , there are no checks to ensure that validators are only staked to once. Since verifywithdrawalCredentials()
only decreases stakedButUnverifiedNativeETH by 32 ETH and can only be called once per validator, it will not be cor-
rectly decremented back to O, resulting in staked ETH from subsequent stake32eth() calls being double counted.

The incrementExtraStakeToReceive() and _reduceExtraStakes() functions do not prevent the staked ETH from be-
ing double-counted, as they only decrement stakedButUnverifiedNativeETH once NodeDelegator receives the ETH.

EigenPod checkpoints track ETH balance changes, hence, it is possible for an unverified validator's withdrawn balance
to be tracked by EigenPod and included as podownerShares . This scenario also causes the ETH to be double-counted,

as stakedButUnverifiedNativeETH is not decremented as podOwnerShares increases.

Recommendations

To prevent the first scenario, create a registry of staked validator public keys and only allow validators to be staked into
once. Keep in mind that already-existing validators will need to be added to this registry retroactively, which will incur
significant gas cost.

To prevent the second scenario, replace the incrementExtraStakeToReceive() and _reduceExtraStakes() functions
with an emergencyReduceUnverifiedStake() function that allows an LRT operator to instantly decrement

stakedButUnverifiedNativeETH . Keep in mind that this is not a perfect fix, as it only provides a recovery measure
instead of a preventative one.

Resolution

The first attack path has been mitigated by creating a registry of staked validator public keys as recommended above
in commit d8854a3.

The Kelp team has acknowledged the second attack path with the following comment:

1. .
Q@ sigmaprime Page | 17

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/d8854a3eef46a17af4d834d55276e59fb9409680

PEPE Upgrade Integration Detailed Findings

We have decided to not implement an emergency function as it introduces extra risks. To prevent this scenario,
we will not exit validators without verification.

1. .
@ sigmaprime Page | 18

PEPE Upgrade Integration Detailed Findings

KLP2-08 incrementExtraStakeToReceive() Can Block Verifying Withdrawal Credentials

Asset NodeDelegator.sol

Status Resolved: See Resolution

Rating Severity: Medium Impact: High Likelihood: Low
Description

Incorrectly calling incrementExtraStakeToReceive() can prevent verifying validator withdrawal credentialsin EigenPod
due to the potential underflow of stakedButUnverifiedNativeETH .

The function incrementExtraStakeToReceive() is used to circumvent a double count issue that arises if an LRT oper-
ator mistakenly stakes to the same pubkey twice. This function increments the value of extraStakeToReceive and if

the NodeDelegator contract receives ETH, the function _reduceExtraStakes() is called to reduce the extra double-
counted stake:

function _reduceExtraStakes(uint256 extraStakeReceived) internal {
if (extraStakeReceived <= @) return;

extraStakeToReceive -= extraStakeReceived;
stakedButUnverifiedNativeETH -= extraStakeReceived;
emit ExtraStakeReceived(extraStakeReceived);

However, if an LRT operator accidentally or maliciously calls incrementExtraStakeToReceive() when there is no dou-
ble count issue, that will prevent an unverified validator from verifying its withdrawal credentials on EigenPod , since
stakedButUnverifiedNativeETH willunderflow. Thisis because, when receiving rewards, stakedButUnverifiedNativeETH
will be incorrectly decremented and hence, the call to the function verifywithdrawalCredentials() will revert due to
an underflow that will occur on line [219]:

function verifyWithdrawalCredentials(
uint64 beaconTimestamp,
BeaconChainProofs.StateRootProof calldata stateRootProof,
uint4e[] calldata validatorIndices,
bytes[] calldata validatorFieldsProofs,
bytes32[][] calldata validatorFields

)
external
onlyLRTOperator

{
// reduce the eth amount that is verified
stakedButUnverifiedNativeETH -= (validatorFields.length * (32 ether));
/) ...

}

Recommendations

Remove the incrementExtraStakeToReceive() function.

To prevent double-counting issues, create a registry that keeps track of every staked validator and ensure that in the
stake32Eth() function the same pubkey cannot be staked twice.

1 . .
QT sigmaprime Page | 19

PEPE Upgrade Integration Detailed Findings

Keep in mind that existing validators will also need to be added to this registry retroactively.

Resolution

This issue has been resolved as recommended above in commit d8854a3.

1. .
@ sigmaprime Page | 20

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/d8854a3eef46a17af4d834d55276e59fb9409680

PEPE Upgrade Integration Detailed Findings

KLP2-09 unlockqueue() Potentially Uses Outdated rsETH Price

Asset LRTWithdrawalManager.sol

Status Closed: See Resolution

Rating Severity: Low Impact: Low Likelihood: Medium
Description

The unlockqQueue() function does not update the rseTH price. Hence, users' withdrawals may be calculated based on
an outdated rsETH price.

In _calculatePayoutAmount() ,the rsETH price is used to calculate the payout amount of a user's withdrawal request.

function _calculatePayoutAmount(
WithdrawalRequest storage request,
uint256 rsETHPrice,
uint256 assetPrice
private
view

returns (uint256)

uint256 currentReturn = (request.rsETHUnstaked * rsETHPrice) / assetPrice;
return (request.expectedAssetAmount < currentReturn) i request.expectedAssetAmount : currentReturn;

unlockQueue() obtains the rseTH price by calling LRTOracle::rsETHPrice() , which may be outdated. If the price is

outdated, the payout amount of a user's withdrawal request can be lower than intended, depending on the rseTH
price when the request was made.

Recommendations

Update the rseTH price by calling LRTOracle::updateRSETHPrice() before calling LRTOracle::rsETHPrice() in

unlockQueue() .

Resolution

The Kelp team has acknowledged this issue with the following comment:

To save on gas costs, we will manually update the price before calling unlockQueue() .

1. .
@ sigmaprime Page | 21

PEPE Upgrade Integration Detailed Findings

KLP2-10 Lack Of Precision In pricePercentagelimit

Asset LRTOracle.sol

Status Closed: See Resolution

Rating Informational
Description

The pricePercentagelLimit variable uses O decimals of precision and hence, only integer percentage limits are allowed.
This is seen in _isNewPriceOffLimit() where 100 is used as the base for the percentage calculation:

function _isNewPriceOffLimit(uint256 oldPrice, uint256 newPrice) private view returns (bool) {
// if oldPrice == newPrice, then no need to check
if (oldPrice == newPrice) return false;
// if pricePercentagelLimit is o, then no need to check
if (pricePercentagelLimit == @) return false;

// calculate the difference between old and new price

uint256 diff = (oldPrice > newPrice) i oldPrice - newPrice : newPrice - oldPrice;
uint256 percentage = (diff * 10e) / oldPrice;

return percentage > pricePercentagelLimit;

Recommendations

Use 2 decimals of precision for the pricePercentageLimit variable (i.e. 10_cee = 100%).

Resolution

The Kelp team has acknowledged this issue and will implement the recommended change in a future upgrade.

1. .
@ sigmaprime Page | 22

PEPE Upgrade Integration Detailed Findings

KLP2-11 LRrtoracle Does Not Check Decimals

Asset LRTOracle.sol

Status Resolved: See Resolution

Rating Informational
Description

The updatePriceOracleFor() function does not check that the oracle uses 18 decimals before adding it.

The _getTotalEthInProtocol() function assumes that all price oracles use 18 decimals as it does not perform any

decimal scaling. If any price oracle does not use 18 decimals, the result of _getTotalEthInProtocol() will be miscal-
culated.

Recommendations

Check that the oracle uses 18 decimals before adding it in updatePriceOracleFor() .

Resolution

The Kelp team has added an updatePriceOracleForvalidated() function that performs a sanity check on the oracle’s
price before it is added in LRTOracle .

This issue has been resolved in commit 5808dff.

1. .
Q@ sigmaprime Page | 23

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/5808dfff08fd8c52df09d636b412db321f5560e8

PEPE Upgrade Integration Detailed Findings

KLP2-12 Miscellaneous General Comments

Asset All contracts

Status Resolved: See Resolution

Rating Informational
Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:

1. MulDivs Are Missing Round Brackets
Related Asset(s): LRTOracle.sol
The mulDiv in updateRSETHPrice() does not use round brackets.

uint256 rewardInETH = increaseInRsEthPrice # rsethSupply / Ie18;
uint256 rewardInRsETH = rewardInETH * @918 / tempRsETHPrice;

Use round brackets to increase the readability of the code and minimise chances for errors.

uint256 rewardInETH = (increaseInRsEthPrice * rsethSupply) / !618;
uint256 rewardInRsETH = (rewardInETH # @918) / tempRsETHPrice;

2. Incorrect Natspec Comments
Related Asset(s): /*
There are multiple instances in the codebase where Natspec comments are outdated or incorrect:

(@) NodeDelegator::sendETHFromUnstakingVvaultToNDC() : Should be "LRT unstaking vault" instead of "LRT de-
posit pool":

(b) There are multiple functions where the Natspec specifies the incorrect access control (should be LRT oper-
ator instead of LRT manager):

® | RTConverter : swapEthToAsset(), transferAssetFromDepositPool()

® | RTDepositPool : transferAssetToNodeDelegator() , transferETHToNodeDelegator(),
transferAssetToLRTUnstakingVault() , transferETHToLRTUnstakingVault()

® | RTUnstakingVault : transferAssetToNodeDelegator() , transferETHToNodeDelegator()
Edit the Natspec comments to fix the incorrect access control and update the descriptions to be more accurate.

3. Protocol Fee Rounding Error
Related Asset(s): LRTOracle.sol
There are unnecessary intermediate divisions in updateRSETHPrice() that may lead to rounding errors when
calculating rsethAmountToMintForProtocol .

uint256 increaseInRsEthPrice = tempRsETHPrice - oldRsETHPrice; // new_price - old_price
uint256 rewardInETH = increaseInRsEthPrice * rsethSupply / IelS;

uint256 rewardInRsETH = rewardInETH * @618 / tempRsETHPrice;
rsethAmountToMintForProtocol = lrtConfig.protocolFeeInBPS() * rewardInRsETH / 7000;

Calculate rewardInRseTH with one division as shown below:

uint256 increaseInRsEthPrice = tempRsETHPrice - oldRsETHPrice;
uint256 rewardInRsETH = increaseInRsEthPrice * rsethSupply / tempRsSETHPrice

I . .
@ sigmaprime Page | 24

PEPE Upgrade Integration Detailed Findings

4. Missing Sanity Checks
Related Asset(s): LRTConfig.sol & LRTOracle.sol

e |RTConfig::setProtocolFeeBps() does not check if _protocolFeeInBPS <= 16_o00 .
e LRTConfig::updateAssetStrategy() does not check the strategy's underlying token.

e [RTOracle::setPricePercentageLimit() does not check if _pricePercentageLimit <= 100 .

Add these checks to ensure that the values are correct.

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The Kelp team has addressed the first two issues above in commit 2dc095d.

The third issue has been addressed by reworking the fee-calculation logic in commit 93b081b.

1. .
@ sigmaprime Page | 25

https://github.com/Kelp-DAO/KelpDAO-contracts/commit/2dc095ddcbba311c7726ba13a2de057c67867d8d
https://github.com/Kelp-DAO/KelpDAO-contracts/commit/93b081b6ab30d2a600a2ce95c16415b60bcbbcc4#diff-ac93eb5f3cc4442f8686b753bbb9fac2c7a3dabd48ba9b75290b93e83b9c00ee

PEPE Upgrade Integration Test Suite

Appendix A Test Suite

A non-exhaustive list of tests were constructed to aid this security review and are given along with this document. The
forge framework was used to perform these tests and the output is given below.

Ran 2 tests for test/tests-fork/LRTDepositPool.fork.t.sol:LRTDepositPoolForkTest

[SKIP] test_getETHDistributionData_FeeReceiverBalanceNotCounted2_Vuln() (gas: o)

[SKIP] test_getETHDistributionData_FeeReceiverBalanceNotCounted_Vuln() (gas: o)

Suite result: ok. @ passed; o failed; 2 skipped; finished in 62.88ms (145.38us CPU time)

Ran 2 tests for test/tests-fork/LRTUnstakingVault.fork.t.sol:LRTUnstakingVaultForkTest
[PASS] test_registerPendingWithdrawals_RemoveDelegatedTo() (gas: 1046685)

[PASS] test_registerPendingWithdrawals_RevertIf_WithdrawalAlreadyRegistered() (gas: 2461636)
Suite result: ok. 2 passed; o failed; o skipped; finished in 85.83ms (11.77ms CPU time)

Ran 3 tests for test/tests-fork/LRTWithdrawalManager.fork.t.sol:LRTWithdrawalManagerForkTest
[PASS] test_FullWithdrawalFlow() (gas: 2310488)

[PASS] test_unlockQueue_FrontRunningPriceManipulation_Vuln() (gas: 2849979)

[SKIP] test_unlockQueue_OutdatedRsETHPrice_Vuln() (gas: o)

Suite result: ok. 2 passed; o failed; 1 skipped; finished in 85.72ms (51.19ms CPU time)

Ran 9 tests for test/tests-fork/NodeDelegator.fork.t.sol:NodeDelegatorForkTest

[PASS] test_ForcedUndelegation_FrozenQueuedwWithdrawal_Vuln() (gas: 1229439)

[PASS] test_ForcedUndelegation_RsETHPriceManipulation_Vuln() (gas: 6422185)

[PASS] test_completeUnstaking_BeaconChainETHStrategyWrongAsset_Vuln() (gas: 4284280)
[PASS] test_completeUnstaking_RevertIf_UnaccountedWithdrawals() (gas: 1457426)

[PASS] test_getETHEigenPodBalance_OverInflateTVL_Vuln() (gas: 5077049)

[PASS] test_incrementExtraStakeToReceive_InsufficientDoubleCountPrevention_Vuln() (gas: 2017224)
[PASS] test_reduceExtraStakes_VerifyWithdrawalCredentialsDoS_Vuln() (gas: 1946057)

[SKIP] test_stakedButUnverifiedNativeETH_DoubleCounting_Vuln() (gas: o)

[PASS] test_verifyWithdrawalCredentials() (gas: 5417350)

Suite result: ok. 8 passed; o failed; 1 skipped; finished in 231.12ms (372.45ms CPU time)

Ran 5 tests for test/tests-fork/LRTOracle.fork.t.sol:LRTOracleForkTest

[PASS] testDifferentialFuzzi_updateRSETHPrice_RoundingError(uint256,uint256,uint256) (runs: 1005, M: 5099394, ~: 5099546)
[PASS] testDifferentialFuzz2_updateRSETHPrice_RoundingError(uint256,uint256,uint256) (runs: 1005, p: 5107812, ~: 5107952)
[PASS] testFuzz_updateRSETHPrice_FeeCalculation(uint256,uint256) (runs: 1005, p: 6916927, ~: 6917013)

[PASS] testFuzz_updateRSETHPrice_FeeRoundingError() (gas: 77863818)

[PASS] testFuzz_updateRSETHPrice_RoundingErrorToZero(uint256,uint256,uint256) (runs: 1005, p: 2152520, ~: 2152666)

Suite result: ok. 5 passed; o failed; o skipped; finished in 55.77s (135.67s CPU time)

Ran 5 test suites in 55.78s (56.24s CPU time): 17 tests passed, o failed, &4 skipped (21 total tests)

I . .
Q sigmaprime Page | 26

PEPE Upgrade Integration Vulnerability Severity Classification

Appendix B Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The total
severity of a vulnerability is derived from these two metrics based on the following matrix.

High Critical

Medium

High

Impact

Low

Low Medium High

Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of a
vulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-
cessed 2018].

[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

I . .
QT sigmaprime Page | 27

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Malicious Validator Front-Running Attack
	Lost Funds After EigenLayer Operator-Initiated Undelegations
	Frozen Withdrawal Due To Wrong ETH Address In completeUnstaking()
	Incorrect getETHEigenPodBalance() Calculation Can Overinflate TVL
	unlockQueue() is Susceptible To Asset Price Manipulation
	FeeReceiver Balance Is Not Included In TVL
	Incorrect stakedButUnverifiedNativeETH Accounting Can Overinflate TVL
	incrementExtraStakeToReceive() Can Block Verifying Withdrawal Credentials
	unlockQueue() Potentially Uses Outdated rsETH Price
	Lack Of Precision In pricePercentageLimit
	LRTOracle Does Not Check Decimals
	Miscellaneous General Comments

	Test Suite
	Vulnerability Severity Classification

