
Kelp DAO

rsETH Adapter
Security Assessment Report

Version: 2.0

November, 2024

Contents
Introduction 2Disclaimer . 2Document Structure . 2Overview . 2
Security Assessment Summary 3Scope . 3Approach . 3Coverage Limitations . 4Findings Summary . 4
Detailed Findings 5

Summary of Findings 6Incorrect Shares Calculation Due To Inaccurate Computation of Total Assets 7Failed Deposit When GainLendingPool Has No rsETH And Non-zero Total Supply 9Price Changes Result In Stuck Tokens . 10Incorrect Modifier Being Used To Pause Deposits . 12No Refunding Of Excess msg.value During Swap . 13Lack Of Access Control On setGainAdapter() . 14Inaccessibility Of setGainAdapter() . 15Inaccuracy On totalAssets() Calculation . 16Vault Whitelist Removal Can Be Disrupted . 17Uninitialised Implementation Contract . 18
depositAsset() May Be Called With ETH . 19Redundant Operation In Fetching minRSETHAmountExpected . 20Miscellaneous General Comments . 22

A Vulnerability Severity Classification 25

1

rsETH Adapter Introduction

Introduction

Sigma Prime was commercially engaged to perform a time-boxed security review of the Kelp and August smartcontracts. The review focused solely on the security aspects of the Solidity implementation of the contract,though general recommendations and informational comments are also provided.

Disclaimer

Sigma Prime makes all effort but holds no responsibility for the findings of this security review. Sigma Primedoes not provide any guarantees relating to the function of the smart contract in scope. Sigma Prime makesno judgements on, or provides any security review, regarding the underlying business model or the individualsinvolved in the project.

Document Structure

The first section provides an overview of the functionality of the smart contracts contained within the scope ofthe security review. A summary followed by a detailed reviewof the discovered vulnerabilities is then givenwhichassigns each vulnerability a severity rating (see Vulnerability Severity Classification), an open/closed/resolved sta-tus and a recommendation. Additionally, findings which do not have direct security implications (but are poten-tially of interest) are marked as informational.
The appendix provides additional documentation, including the severity matrix used to classify vulnerabilitieswithin the smart contracts in scope.

Overview

The GainAdapter contract is an adapter contract for converting the deposited assets into rsETH tokens. Thecontract is used as a central point for user interactions with multiple gain vaults.
The GainLendingPool contract represents a lending pool that is fully compliant with the ERC-4626 standard.
This contract receives assets from the GainAdapter contract in the form of rsETH tokens.

Page | 2

rsETH Adapter Security Assessment Summary

Security Assessment Summary

Scope

The assessment consists of two parts. The first part of the review was conducted on the files hosted on the KelpDAO repository. While the second part of the review was conducted on the Fractal Protocol repository.
The scope of this time-boxed review was strictly limited to files at commit 685ac41 for the first part and commited67adc for the second part.
The retesting of the fixeswas conducted at commit 0a3f37c for the first part and commit 9a3d0ed for the secondpart.
The following files were considered in scope:

1. Part 1
• GainAdapter.sol

• WeETHPriceOracle.sol

• WstETHPriceOracle.sol

• METHPriceOracle.sol

• RETHPriceOracle.sol

2. Part 2
• GainLendingPool.sol

Note: third party libraries and dependencies, such as OpenZeppelin, were excluded from the scope of this assessment.

Approach

The manual review focused on identifying issues associated with the business logic implementation of the con-tracts. This includes their internal interactions, intended functionality and correct implementation with respectto the underlying functionality of the Ethereum Virtual Machine (for example, verifying correct storage/memorylayout).
Additionally, the manual review process focused on identifying vulnerabilities related to known Solidity anti-patterns and attack vectors, such as re-entrancy, front-running, integer overflow/underflow and correct visibilityspecifiers.
For a more detailed, but non-exhaustive list of examined vectors, see [1, 2].
To support this review, the testing team also utilised the following automated testing tools:

• Mythril: https://github.com/ConsenSys/mythril
• Slither: https://github.com/trailofbits/slither
• Surya: https://github.com/ConsenSys/surya

Page | 3

https://github.com/Kelp-DAO
https://github.com/Kelp-DAO
https://github.com/fractal-protocol/public-vaults
https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/685ac414661ea3d580980b4993476e1f1ac409ea
https://github.com/fractal-protocol/public-vaults/commit/ed67adc5ce84519f02e6ec6a66848d46e2bb829b
https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/0a3f37c22bc334da4a15ec4af66659b5eb8a15bf
https://github.com/fractal-protocol/public-vaults/commit/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22
https://github.com/ConsenSys/mythril
https://github.com/trailofbits/slither
https://github.com/ConsenSys/surya

rsETH Adapter Coverage Limitations

• Aderyn: https://github.com/Cyfrin/aderyn
Output for these automated tools is available upon request.

Coverage Limitations

Due to the time-boxed nature of this review, all documented vulnerabilities reflect best effort within the allotted,limited engagement time. As such, Sigma Prime recommends to further investigate areas of the code, and anyrelated functionality, where majority of critical and high risk vulnerabilities were identified.

Findings Summary

The testing team identified a total of 13 issues during this assessment. Categorised by their severity:
• Critical: 1 issue.
• High: 2 issues.
• Medium: 2 issues.
• Low: 3 issues.
• Informational: 5 issues.

Page | 4

https://github.com/Cyfrin/aderyn

rsETH Adapter Detailed Findings

Detailed Findings

This section provides a detailed description of the vulnerabilities identified within the Kelp DAO smart contractsin scope. Each vulnerability has a severity classification which is determined from the likelihood and impact ofeach issue by the matrix given in the Appendix: Vulnerability Severity Classification.
A number of additional properties of the contracts, including gas optimisations, are also described in this sectionand are labelled as “informational”.
Each vulnerability is also assigned a status:

• Open: the issue has not been addressed by the project team.
• Resolved: the issue was acknowledged by the project team and updates to the affected contract(s) havebeen made to mitigate the related risk.
• Closed: the issue was acknowledged by the project team but no further actions have been taken.

Page | 5

Summary of Findings

ID Description Severity Status

KRSA-01 Incorrect Shares Calculation Due To Inaccurate Computation of TotalAssets Critical Resolved

KRSA-02 Failed Deposit When GainLendingPool Has No rsETH And Non-zero To-tal Supply High Resolved

KRSA-03 Price Changes Result In Stuck Tokens High Closed

KRSA-04 Incorrect Modifier Being Used To Pause Deposits Medium Resolved

KRSA-05 No Refunding Of Excess msg.value During Swap Medium Resolved

KRSA-06 Lack Of Access Control On setGainAdapter() Low Resolved

KRSA-07 Inaccessibility Of setGainAdapter() Low Closed

KRSA-08 Inaccuracy On totalAssets() Calculation Low Resolved

KRSA-09 Vault Whitelist Removal Can Be Disrupted Informational Resolved

KRSA-10 Uninitialised Implementation Contract Informational Resolved

KRSA-11 depositAsset() May Be Called With ETH Informational Resolved

KRSA-12 Redundant Operation In Fetching minRSETHAmountExpected Informational Resolved

KRSA-13 Miscellaneous General Comments Informational Resolved

6

rsETH Adapter Detailed Findings

KRSA-01 Incorrect Shares Calculation Due To Inaccurate Computation of Total Assets
Asset GainLendingPool.sol

Status Resolved: See Resolution
Rating Severity: Critical Impact: High Likelihood: High

Description

The conversions between shares and assets do not account for assets held externally to GainLendingPool when calcu-lating total assets. The issue applies to any conversion between shares and assets including deposits and withdrawals.
The following uses the deposit case as an example. When a user makes a deposit, they are minted shares based on theratio of the amount of assets deposited to the total assets within the system. However, the previewDeposit() function,
which computes the user's shares, calls _getTotalAssets() which only includes the amount of assets currently storedwithin the vault.
The function previewDeposit() will call _convertToShares() , where the total assets is set as _getTotalAssets() .
function previewDeposit(uint256 assets) public view virtual override returns (uint256) {

return _convertToShares(assets, MathUpgradeable.Rounding.Down);
}

function _convertToShares(uint256 assets, MathUpgradeable.Rounding rounding) internal view virtual returns (uint256) {
return (assets == 0 || _totalSupply == 0) ? _initialConvertToShares(assets, rounding) : assets.mulDiv(_totalSupply,

_getTotalAssets(), rounding);↪→
}

However, _getTotalAssets() does not include all assets held by the vault. The correct accounting for total assets can
be seen in the function totalAssets() , where assets in the gain adapter are included.
function totalAssets() external view override returns (uint256) {

uint256 ethReservedAmount = gainAdapter.getEthReservedAmount(address(this));
uint256 rsETHReservedAmount = gainAdapter.getRsETHValueFromETHAmount(ethReservedAmount);
uint256 internalTotalAssets = _getTotalAssets();

return internalTotalAssets + rsETHReservedAmount;
}

The impact is that the assets belonging to the vault currently being held by the adapter are not included in the sharecalculations. This results in users receiving more shares per asset than they should upon deposits.

Recommendations

The issue may be resolved by overriding _getTotalAssets() to include the assets being held by GainAdapter for thevault.
Modifications will also need to be made to totalAssets() to account for this.

Page | 7

rsETH Adapter Detailed Findings

Resolution

This issue has been solved in commit 8db0fd3. The function _getTotalAssets() is overridden on GainLendingPool

contract to include the assets held by the GainAdapter for the vault.

Page | 8

https://github.com/fractal-protocol/public-vaults/pull/2/commits/8db0fd383eb5b7c0179da15f619811dea2ba8dc4

rsETH Adapter Detailed Findings

KRSA-02 Failed Deposit When GainLendingPool Has No rsETH And Non-zero Total Supply
Asset GainLendingPool.sol

Status Resolved: See Resolution
Rating Severity: High Impact: High Likelihood: Medium

Description

A deposit transaction fails under a certain condition.
A deposit transaction involves a user calling either GainAdapter.depositETH() or GainAdapter.depositAssets() while
transferring the ownership of the deposited assets from the user to the GainAdapter contract. The called function then
calls GainLendingPool.reserveDeposit() .
The testing team observed the following edge-case on the GainLendingPool contract (referred to as the vault contract)when executing a deposit transaction.

1. The vault contract does not hold any rsETH (here, rsETH is the supported asset).
2. The vault contract has successfully accepted a deposit and therefore the liquidity pool token's total supply isnon-zero.

If the described condition above holds, the deposit transaction reverts. This occurs because the function
BaseUpgradeableERC4626._getTotalAssets() that is called when executing previewDeposit() returns zero. The zero
return value is due to the exclusion of the assets still held by the GainAdapter contract as the caller. This chain of
executions yields a division by zero operation in function BaseUpgradeableERC4626._convertToShares() .
Consider the following example.

1. Original condition: the vault does not hold any rsETH .
2. A deposit transaction TX1 is received. The TX1 is successfully executed and the caller receives the newly mintedliquidity token. Here, the liquidity token's total supply is non-zero. The deposited asset is held by the GainAdaptercontract.
3. A deposit transaction TX2 is received which will revert due to a division by zero.

Recommendations

Override the function _getTotalAssets() to include the assets held by the GainAdapter contract.

Resolution

This issue has been solved in commit 8db0fd3. The function _getTotalAssets() is overridden on GainLendingPool

contract to include the assets held by the GainAdapter for the vault.
Page | 9

https://github.com/fractal-protocol/public-vaults/pull/2/commits/8db0fd383eb5b7c0179da15f619811dea2ba8dc4

rsETH Adapter Detailed Findings

KRSA-03 Price Changes Result In Stuck Tokens
Asset GainLendingPool.sol, GainAdapter.sol

Status Closed: See Resolution
Rating Severity: High Impact: Medium Likelihood: High

Description

A price increase of either rsETH or the underlying asset prevent tokens being transferred to the GainAdapter .
The deposit process has three steps.

1. User: depositETH() / depositAsset()

2. Operator: mintRsETH()

3. Operator: sendRsETHToVault()

When depositETH() or depositAsset() is called the current value of the incoming asset is recorded in ETH and added
to ethReserved[vault] . However, there is a delay before the operator calls mintRsETH() and then sendRsETHToVault() .
If there is a price increase of rsETH between mintRsETH() and sendRsETHToVault() , then the ETH value of the rsETH

will increase above the amount registered in the deposit. As a result, if all the rsETH is transferred in sendRsETHToVault()then the following line will cause a revert.
if (ethReserved[vault] < ethValueOfRsETHAmount) {

revert NotEnoughETHReserved();
}

Consider the following example.
1. depositETH() of 100 ETH such that ethReserved[vault] = 100

2. mintRsETH() at a price of 9:10 such that 90 rsETH tokens are minted
3. rsETH price increases about 1%
4. sendRsETHToVault() for 90 rsETH tokens will revert as the current value is 101 ETH which is larger than

ethReserved[vault] .

The result of this example is that about 1 rsETH must be left in the GainAdapter contract and cannot be transferred
to GainLendingPool .
A similar principle can be applied to price changes of assets relative to rsETH if depositAsset() is called with analternate token.
The impact is that a portion of the rsETH tokens will not be accounted for by any vault and stuck in the contract.

Page | 10

rsETH Adapter Detailed Findings

Recommendations

One solution is to perform the deposit, mint and send steps together. That is, expand the logic of depositETH() and
depositAsset() to perform minting and sending operations.
An alternate solution is to combine the deposit and mint steps. If the assets are converted to rsETH during the depositfunctions then the rsETH amount can be stored instead of ethReserved[vault] . This would allow the exact tokenamounts to be transferred, to match the stored values.

Resolution

The development team acknowledged the issue with the following statement.
While excess ETH or other asset accumulation in the adapter contract is acknowledged, this design choice ensures protocol
stability and does not impact user funds. The protocol guarantees that the ETH equivalent of user deposits will always be
honored, regardless of the asset type or price fluctuations.

Page | 11

rsETH Adapter Detailed Findings

KRSA-04 Incorrect Modifier Being Used To Pause Deposits
Asset GainLendingPool.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: Low Likelihood: High

Description

The reserveDeposit() function uses a modifier to allow deposit reservations only if deposits are not currently paused.
However, the function currently implements the ifWithdrawalsNotPaused modifier which is intended to prevent thefunction from executing when withdrawals have been paused. This means that if deposits are paused by setting
depositsPaused == true , deposit reservations will still be allowed.
function reserveDeposit(address account, uint256 amountInETH) external nonReentrant ifConfigured ifWithdrawalsNotPaused {

Recommendations

Replace the ifWithdrawalsNotPaused modifier with ifDepositsNotPaused .

Resolution

This issue has been addressed in commit 9a3d0ed. The reserveDeposit() function has been updated by replacing the
ifWithdrawalsNotPaused modifier with the ifDepositsNotPaused modifier.

Page | 12

https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22

rsETH Adapter Detailed Findings

KRSA-05 No Refunding Of Excess msg.value During Swap
Asset GainAdapter.sol

Status Resolved: See Resolution
Rating Severity: Medium Impact: High Likelihood: Low

Description

When calling swapAssetForETH() it is possible that the operator may send msg.value > assetValueInETH to accountfor any price fluctuations during the transaction. However, in this event the excess amount is never refunded to theoperator and is locked within the contract.

Recommendations

Add a check to see whether msg.value > assetValueInETH and if that is the case refund the excess amount to theoperator.

Resolution

The issue has been fixed on commit e5d30e9. The excess ETH is now returned to the caller.

Page | 13

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/e5d30e9aa0dbb5a7ae1a761f29c1c8da61ccfcdb

rsETH Adapter Detailed Findings

KRSA-06 Lack Of Access Control On setGainAdapter()

Asset GainLendingPool.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Medium Likelihood: Low

Description

The function setGainAdapter() does not have any access control. This will allow anyone to call this function and set
_gainAdapter to a malicious address.
The issue is rated low likelihood as the function may only be called once and should be done right after deployment.

Recommendations

Consider adding the onlyOwner() modifier to ensure that only _owner is able to set this value.

Resolution

This issue has been addressed in commit 9a3d0ed. The onlyOwner() modifier has been added to the setGainAdapter()function.

Page | 14

https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22

rsETH Adapter Detailed Findings

KRSA-07 Inaccessibility Of setGainAdapter()
Asset GainLendingPool.sol

Status Closed: See Resolution
Rating Severity: Low Impact: Low Likelihood: Low

Description

The modifier ifNotConfigured in function setGainAdapter() may prevent the function to be called properly.
This happens if configurePool() is called before setGainAdapter() , then the function setGainAdapter() can no
longer be called. Therefore, reserveDeposit() reverts with Unauthorized() .

Recommendations

Consider removing the modifier ifNotConfigured . Alternatively, make sure the function setGainAdapter() is called
before the function configurePool() in the deployment script.

Resolution

The development team acknowledged the issue with the following statement.
This is intentional asweonlywant the gainAdapter to be set one time. The deployment script is set up so that setGainAdapter()

is called before configurePool() .

Page | 15

rsETH Adapter Detailed Findings

KRSA-08 Inaccuracy On totalAssets() Calculation
Asset GainLendingPool.sol

Status Resolved: See Resolution
Rating Severity: Low Impact: Low Likelihood: Medium

Description

The function GainLendingPool.totalAssets() takes into account the potentially stale value GainAdapter.ethReservedAmount .
GainAdapter.ethReservedAmount[vault] is the recorded value of all assets currently held by the GainAdapter for a
specific vault. It includes the reserved deposits for the GainLendingPool .
Each asset is priced in ETH at the time of deposit. Hence, theremay be discrepancies between the recorded amount andthe current value. Therefore, the return value of totalAssets() is not accounting for price fluctuations of underlyingassets.

Recommendations

The recommendation of KRSA-01 may be used to resolve this issue.
Alternatively, to get a more accurate result, consider recording separate amounts for each asset and recalculating thecurrent value of each asset class in the GainAdapter . This will significantly increase gas consumption.

Resolution

This issue has been solved in commit 8db0fd3. The function _getTotalAssets() is overridden on GainLendingPool

contract to include the assets held by the GainAdapter for the vault.

Page | 16

https://github.com/fractal-protocol/public-vaults/pull/2/commits/8db0fd383eb5b7c0179da15f619811dea2ba8dc4

rsETH Adapter Detailed Findings

KRSA-09 Vault Whitelist Removal Can Be Disrupted
Asset GainAdapter.sol

Status Resolved: See Resolution
Rating Informational

Description

A malicious actor could repeatedly send a dust amount to satisfy the following condition: ethReserved[vault] != 0 .
This will revert the call to function removeWhitelistedVault() to remove the vault from the whitelist because of thecheck on lines [432-434]:
if (ethReserved[vault] != 0) {

revert EthReservedIsNotZero();
}

Aditionally, challenges may occur in forcing the value of ethReserved[vault] to be zero. That is because
sendRsETHToVault() takes in an amount of rsETH and converts it to ETH value. Due to the scaling of shares it wouldneed to use the price at a specific block to predict exactly the number of rsETH share to transfer to the vault.
The issue is raised as informational severity as the pauser may pause deposits on the vault contract to prevent this.

Recommendations

Consider adding a minimum amount to deposit to prevent dust amount.

Resolution

The issue has been fixed on commit e87811c. A customisable minimum amount is now enforced to prevent dustamount deposits.

Page | 17

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/e87811c1acb9153ab5e017a39b86b9abbfb09a12

rsETH Adapter Detailed Findings

KRSA-10 Uninitialised Implementation Contract
Asset GainAdapter.sol

Status Resolved: See Resolution
Rating Informational

Description

Openzeppelin recommends locking implementation contracts upon deployment to prevent them from being taken overby an attacker.

Recommendations

The following should be added to ensure that a deployed contract is not left unlocked:
/// @custom:oz-upgrades-unsafe-allow constructor
constructor() {

_disableInitializers();
}

Resolution

The issue has been fixed on commit fe0b397. The recommended action is implemented.

Page | 18

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/fe0b3974f990bf2aed3d8d324e55b6c91434d909

rsETH Adapter Detailed Findings

KRSA-11 depositAsset() May Be Called With ETH
Asset GainAdapter.sol

Status Resolved: See Resolution
Rating Informational

Description

There are no restrictions to stop depositAsset() from being called with the asset as ETH_IDENTIFIER .
Were a user to call depositAsset() with ETH_IDENTIFIER a revert would occur. That is due to safeTransfer() , whichperforms checks to ensure the token address has code.
Since a revert occurs the issue is raised as informational.

Recommendations

Consider adding a check to depositAsset() to ensure the asset is not ETH_IDENTIFIER .

Resolution

The issue has been fixed on commit af21266. An additional check is now added in function depositAsset() to preventthe issue from happening.

Page | 19

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/af212663a354021b6dbc1d253d4d1e423a231bcc

rsETH Adapter Detailed Findings

KRSA-12 Redundant Operation In Fetching minRSETHAmountExpected

Asset GainAdapter.sol

Status Resolved: See Resolution
Rating Informational

Description

On line [323], the rsETHAmountToMint becomes minRSETHAmountExpected in LRTDepositPool.depositAsset() .
lrtDepositPool.depositAsset(asset, depositAmount, rsETHAmountToMint, "");

Here is the definition of function LRTDepositPool.depositAsset() taken from ILRTDepositPool.sol .
function depositAsset(

address asset,
uint256 depositAmount,
uint256 minRSETHAmountExpected,
string calldata referralId

)
external;

The function LRTDepositPool.depositAsset() compares the value of minRSETHAmountExpected and the internally-
calculated rsethAmountToMint in function LRTDepositPool._beforeDeposit() .
A value check can be found on lines [561-563] of LRTDepositPool.sol as shown below:
if (rsethAmountToMint < minRSETHAmountExpected) {

revert MinimumAmountToReceiveNotMet();
}

Note that rsethAmountToMint is calculated by calling LRTDepositPool.getRsETHAmountToMint() on line [559] of
LRTDepositPool.sol (as a part of the operation of LRTDepositPool.depositETH() function):
rsethAmountToMint = getRsETHAmountToMint(asset, depositAmount);

The code above is identical to the code on line [304] of GainAdapter contract.
uint256 rsETHAmountToMint = lrtDepositPool.getRsETHAmountToMint(asset, depositAmount);

Hence, the following condition always holds:
rsETHAmountToMint == minRSETHAmountExpected , because both values are retrieved using the identical function of
LRTDepositPool.getRsETHAmountToMint() with identical input parameters. Therefore, it is somewhat redundant.

Recommendations

Consider refactoring the function mintRsETH() such that the expected amount to mint becomes a user input. Alterna-
tively, simply use zero as rsETHAmountToMint on lines [315, 323] of GainAdapter.sol to make sure the check on lines
[561-563] of LRTDepositPool.sol passes.

Page | 20

https://github.com/Kelp-DAO/LRT-rsETH/blob/c2ed08e30cbba8c6d4c8e4670142fdd2009733ce/contracts/LRTDepositPool.sol#L561-L563
https://github.com/Kelp-DAO/LRT-rsETH/blob/c2ed08e30cbba8c6d4c8e4670142fdd2009733ce/contracts/LRTDepositPool.sol#L559C9-L559C26
https://github.com/Kelp-DAO/LRT-rsETH/blob/c2ed08e30cbba8c6d4c8e4670142fdd2009733ce/contracts/LRTDepositPool.sol#L73-L89
https://github.com/Kelp-DAO/LRT-rsETH/blob/c2ed08e30cbba8c6d4c8e4670142fdd2009733ce/contracts/LRTDepositPool.sol#L561-L563
https://github.com/Kelp-DAO/LRT-rsETH/blob/c2ed08e30cbba8c6d4c8e4670142fdd2009733ce/contracts/LRTDepositPool.sol#L561-L563

rsETH Adapter Detailed Findings

Resolution

The issue has been fixed on commit 5e6f061. The minRsETHAmountExpected is now an input value.

Page | 21

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/5e6f06124f90c13e224b060f394b566cbf574775

rsETH Adapter Detailed Findings

KRSA-13 Miscellaneous General Comments
Asset All contracts
Status Resolved: See Resolution
Rating Informational

Description

This section details miscellaneous findings discovered by the testing team that do not have direct security implications:
1. No Check For Address(0)

Related Asset(s): LendingPool.sol
In configurePool() there are no checks for address(0) on newScheduledCallerAddress and newUnderlyingAsset

when passing these values. As their respective variables (scheduledCallerAddress and _underlyingAsset) do
not have setter functions to update their value later, if they are accidentally set to address(0) this will deem thepool unusable.
Consider adding a check for address(0) for both values.

2. Unnecessary Check For msg.sender in isBlacklisted

Related Asset(s): GainLendingPool.sol
In processWithdrawal() the following check is made:
if (isBlacklisted[msg.sender] || isBlacklisted[account]) {

revert Errors.Blacklisted();
}

However, since the only allowed caller of this function is the gainAdapter the check for isBlacklisted[msg.sender]

will never return true .
Consider removing the check for isBlacklisted[msg.sender] .

3. Unnecessary Check On msg.sender

Related Asset(s): GainLendingPool.sol
In processWithdrawal() the following check is made:
if (msg.sender != address(gainAdapter) || msg.sender == account) {

revert Errors.Unauthorized();
}

However, the second check of msg.sender == account is unnecessary as only the gainAdapter is allowed to
call this function. This makes the first check sufficient as any address other than the gainAdapter will be denied.
Also, since the gainAdapter does notmaintain an account with the vault , the second conditionwill never return
true .
Consider removing the second check for msg.sender == account in the if statement.

4. Inaccurate Information Emitted By WithdrawalRequested Event
Related Asset(s): GainLendingPool.sol
The event WithdrawalRequested as defined in the TimeLockedERC4626 contract specifies that the first argument
is ownerAddress , while the emitting code on line [75] of GainLendingPool contract specifies msg.sender as the

Page | 22

rsETH Adapter Detailed Findings

first argument. Since msg.sender is the GainAdapter contract, this means that this argument does not reflectthe actual owner of the asset.
Consider replacing msg.sender with account to increase information accuracy.

5. Typo
Related Asset(s): GainLendingPool.sol
The word fors on line [40] may be a typo. Replace with for .

6. Access Control Implementation Could Utilise A Modifier
Related Asset(s): GainLendingPool.sol
The access control code on lines [45-47] could be implemented using a modifier for simplicity and readability.

7. Potential Zero Value For ethValueOfRsETHAmount And assetValueInETH

Related Asset(s): GainAdapter.sol
In sendRsETHToVault() on line [264] there is no check to ensure the value returned for ethValueOfRsETHAmount

is not zero. This is also the case in swapAssetForETH() on line [377] for assetValueInETH .
Add a check to ensure both values are none zero similar to what is being done for assetValueInETH on line [201].

8. Multiple requestIds

Related Asset(s): GainAdapter.sol
Lido's claimWIthdrawalsTo() allows for multiple requestIds (as evident from UnstakeStETH._claimStEth())
but claimStEth() only allows for a single requestId instead.
So if there are multiple requestIds (from unstakeStEth() -> UnstakeStETH._unstakeStEth()) to process, then
the operator needs to call claimStEth() multiple times, which can be inconvenient.
Consider allowing multiple requestIds to allow asset claiming in one transaction.

9. Approval Operation
Related Asset(s): GainAdapter.sol
Consider replacing the approve() function on line [321] with safeApprove() .

Recommendations

Ensure that the comments are understood and acknowledged, and consider implementing the suggestions above.

Resolution

The development team’s responses to the raised issues above are as follows.
1. No fix.
2. Fixed on commit 9a3d0ed.
3. Fixed on commit 9a3d0ed.
4. Fixed on commit 9a3d0ed.
5. Fixed on commit 9a3d0ed.
6. No fix.

Page | 23

https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22
https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22
https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22
https://github.com/fractal-protocol/public-vaults/pull/2/commits/9a3d0ed8ad04aa3d0e3a665eb406cca337bb7e22

rsETH Adapter Detailed Findings

7. Fixed on commit e760873.
8. Fixed on commit e760873.
9. Fixed on commit e760873.

Page | 24

https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/e760873fcef72a407252458f16f165956737ba76
https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/e760873fcef72a407252458f16f165956737ba76
https://github.com/Kelp-DAO/rseth-adapter-for-4626-vault/commit/e760873fcef72a407252458f16f165956737ba76

rsETH Adapter Vulnerability Severity Classification

Appendix A Vulnerability Severity Classification

This security review classifies vulnerabilities based on their potential impact and likelihood of occurance. The totalseverity of a vulnerability is derived from these two metrics based on the following matrix.

High Medium High Critical

Im
pa
ct Medium Low Medium High

Low Low Low Medium

Low Medium High
Likelihood

Table 1: Severity Matrix - How the severity of a vulnerability is given based on the impact and the likelihood of avulnerability.

References

[1] Sigma Prime. Solidity Security. Blog, 2018, Available: https://blog.sigmaprime.io/solidity-security.html. [Ac-cessed 2018].
[2] NCC Group. DASP - Top 10. Website, 2018, Available: http://www.dasp.co/. [Accessed 2018].

Page | 25

https://blog.sigmaprime.io/solidity-security.html
http://www.dasp.co/

	Introduction
	Disclaimer
	Document Structure
	Overview

	Security Assessment Summary
	Scope
	Approach
	Coverage Limitations
	Findings Summary

	Detailed Findings
	 Summary of Findings
	Incorrect Shares Calculation Due To Inaccurate Computation of Total Assets
	Failed Deposit When GainLendingPool Has No rsETH And Non-zero Total Supply
	Price Changes Result In Stuck Tokens
	Incorrect Modifier Being Used To Pause Deposits
	No Refunding Of Excess msg.value During Swap
	Lack Of Access Control On setGainAdapter()
	Inaccessibility Of setGainAdapter()
	Inaccuracy On totalAssets() Calculation
	Vault Whitelist Removal Can Be Disrupted
	Uninitialised Implementation Contract
	depositAsset() May Be Called With ETH
	Redundant Operation In Fetching minRSETHAmountExpected
	Miscellaneous General Comments

	Vulnerability Severity Classification

