FINI:II_ ng
R’EPDR’T

eeeeeeeeeee



A security

Disclaimer:

Security assessment projects are time-boxed and often reliant on information that may be
provided by a client, its affiliates, or its partners. As a result, the findings documented in this
report should not be considered a comprehensive list of security issues, flaws, or defects in
the target system or codebase.

The content of this assessment is not an investment. The information provided in this report is
for general informational purposes only and is not intended as investment, legal, financial,
regulatory, or tax advice. The report is based on a limited review of the materials and
documentation provided at the time of the audit, and the audit results may not be complete or

identify all possible vulnerabilities or issues. The audit is provided on an "as-is," "where-is," and
"as-available" basis, and the use of blockchain technology is subject to unknown risks and

flaws.

The audit does not constitute an endorsement of any particular project or team, and we make
no warranties, expressed or implied, regarding the accuracy, reliability, completeness, or
availability of the report, its content, or any associated services or products. We disclaim all
warranties, including the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement.

We assume no responsibility for any product or service advertised or offered by a third party
through the report, any open-source or third-party software, code, libraries, materials, or
information linked to, called by, referenced by, or accessible through the report, its content,
and the related services and products. We will not be liable for any loss or damages incurred
as a result of the use or reliance on the audit report or the smart contract.

The contract owner is responsible for making their own decisions based on the audit report
and should seek additional professional advice if needed. The audit firm or individual assumes
no liability for any loss or damages incurred as a result of the use or reliance on the audit
report or the smart contract. The contract owner agrees to indemnify and hold harmless the
audit firm or individual from any and all claims, damages, expenses, or liabilities arising from
the use or reliance on the audit report or the smart contract.

By engaging in a smart contract audit, the contract owner acknowledges and agrees to the
terms of this disclaimer.

Bailsec.io



A security

1. Project Details

Important:
Please ensure that the deployed contract matches the source-code of the last commit hash.

Kelp Dao — Core — Differential - Audit Report

Website kerneldao.com

Language Solidity

Methods Manual Analysis

Github repository https://github.com/Kelp-DAO/KelpDAO-
contracts/tree/5d930dddffffd3f7a3fcd763f88d5Sb2fb13b112a

Resolution 1 https://github.com/Kelp-DAO/KelpDAO-
contracts/tree/2db8d320b798c9d11566c95d5e25a7cc45cf96
42

Bailsec.io


https://github.com/Kelp-DAO/KelpDAO-contracts/tree/5d930dddffffd3f7a3fcd763f88d5b2fb13b112a
https://github.com/Kelp-DAO/KelpDAO-contracts/tree/5d930dddffffd3f7a3fcd763f88d5b2fb13b112a

Z\x security

2. Detection Overview

Acknowledged
Severity Found Resolved Partially (ho changes Failed
Resolved made] resolution

High

Medium

Low 7
Informational 8
Governhance 1
Total 16

9 2
9 3

1
10 6

2.1 Detection Definitions

Severity

Description

High

Medium

Low

Informational

Governance

Bailsec.io

The problem poses a significant threat to the confidentiality of a
considerable number of users' sensitive data. It also has the potential
to cause severe damage to the client's reputation or result in
substantial financial losses for both the client and the affected users.

While medium level vulnerabilities may not be easy to exploit, they can
still have a major impact on the execution of a smart contract. For
instance, they may allow public access to critical functions, which could
lead to serious consequences.

Poses a very low-level risk to the project or users. Nevertheless the
issue should be fixed immediately

Effects are small and do not post an immediate danger to the project or
users

Governance privileges which can directly result in a loss of funds or
other potential undesired behavior



A security

3. Detection

LRTConfig

LRTConfig is a configuration management contract that serves as the central registry for
protocol parameters, supported assets, contract addresses, and role-based access control.
This contract is used throughout the protocol by all major components including
LRTDepositPool, LRTOracle, NodeDelegator, and LRTWithdrawalManager to retrieve
configuration data and validate asset support. The diff introduces an emergency pause
mechanism allowing protocol operators to halt all pausable contracts simultaneously in
critical situations.

The new pauseAll function enables PAUSER_ROLE holders to pause the deposit pool,
withdrawal manager, oracle, rsETH token, and all node delegators in a single transaction. This
centralized pause capability provides a coordinated emergency response mechanism across
the entire protocol. The function iterates through all node delegators in the queue and pauses
each one that isn't already paused, ensuring system-wide protection during critical events.
Access control is enforced through DEFAULT_ADMIN_ROLE for administrative functions,
MANAGER role for operational parameters, and TIME_LOCK_ROLE for adding new supported
assets.

Privileged Functions

e pauseAll

Core Invariants:

INV 1: Only PAUSER_ROLE can trigger the pauseAll emergency function.

Bailsec.io



A security

LRTConverter

LRTConverter is an adapter contract managing LST unstaking operations and tracking ETH
value during conversions. Used by operators to unstake stETH to ETH via Lido's withdrawal
queue while maintaining protocol accounting. The diff transitions asset transfer functions
from OPERATOR_ROLE to the new ASSET_TRANSFER_ROLE for improved permission
granularity.

The access control change for transferAssetFromDepositPool and
transferAssetToDepositPool now requires ASSET_TRANSFER_ROLE instead of
OPERATOR_ROLE, enabling separation of fund movement privileges from general operational
tasks. These functions update the ethValuelnWithdrawal accounting variable to track value
locked in conversion processes. The OPERATOR_ROLE retains control over actual unstaking
operations via unstakeStEthnd claiming via claimStEth, while MANAGER role manages the
whitelist for withdrawal intent declarations. The withinUnstakeLimits modifier consumes
whitelisted allowance before checking against active user withdrawals.

Privileged Functions

e transferAssetFromDepositPool
e transferAssetToDepositPool

Core Invariants:

INV 1: Only ASSET_TRANSFER_ROLE can transfer assets between deposit pool and converter.

Bailsec.io



A security

LRTDepositPool

LRTDepositPool is the primary entry point for users depositing LSTs and ETH into the protocol
in exchange for rsETH shares. Used by end users to enter the protocol and by operators to
distribute assets to NodeDelegators and the unstaking vault. The diff removes legacy
unstaking vault asset tracking and transitions asset transfer functions from OPERATOR_ROLE
to the new ASSET_TRANSFER_ROLE for improved permission separation.

The removal of getAssetsUnstaking call in getAssetDistributionData eliminates legacy
tracking of assets in delayed EigenlLayer withdrawals at the vault level, as this is now handled
elsewhere. The removal of assetUnstakingFromEigenlLayer initialization from
getAssetDistributionData for LSTs reflects the same legacy cleanup. Access control for
transferAssetToNodeDelegator, transferETHToNodeDelegator,
transferAssetToLRTUnstakingVault, and transferETHToLRTUnstakingVault now requires
ASSET_TRANSFER_ROLE instead of OPERATOR_ROLE, creating a dedicated permission for
fund movements. The pause function now requires PAUSER_ROLE instead of LRT_MANAGER
for consistency.

Privileged Functions

e transferAssetToNodeDelegator

e transferETHToNodeDelegator

e transferAssetToLRTUnstakingVault
e transferETHToLRTUnstakingVault

Core Invariants:

INV 1: Only ASSET_TRANSFER_ROLE can transfer assets to node delegators and unstaking
vault.

Bailsec.io



A security

LRTOracle

LRTOracle is a price calculation contract that computes rsETH exchange rates relative to ETH
based on total protocol assets and supply. Used by LRTDepositPool to determine mint
amounts during deposits and by LRTWithdrawalManager for withdrawal calculations. The diff
introduces period alignment for fee minting limits through a reinitialize function, adds view
functions for transparency into daily limits and reset timing, and refines the fee minting limit
check logic while removing an unreachable TVL invariant check.

The reinitialize function sets feePeriodStartTime within the last 24 hours to establish aligned
daily periods for fee minting limits, ensuring consistent reset times. New view functions
getCurrentPeriodStartTime, remainingDailyFeeMintLimit, and
getNextDailyLimitResetTimestamp provide transparency into the fee minting system's state.
The _checkAndUpdateDailyFeeMintLimit now initializes the period if unset and uses
getCurrentPeriodStartTime for precise period alignment when resetting, preventing period
drift. The previous protocol fee TVL increase invariant check was removed as unreachable due
to mathematical constraints. Pause access changed from MANAGER to PAUSER_ROLE for
consistency with protocol-wide emergency controls.

Privileged Functions

e pause

Core Invariants:

INV 1: Fee minting cannot exceed maxFeeMintAmountPerDay in any 24-hour period.

Bailsec.io



A security

\|ssue_01 Redundant feePeriodStartTime == 0 check

Severity Info

Description feePeriodStartTime is set in reinitializer, which means it's value
cannot be 0 as there is no function to set/reset it otherwise.

This means the feePeriodStartTime checks have no effect since it is
hever true.

Recommendations | Consider removing these checks.

Comments / Fixed by following recommendation.
Resolution

Bailsec.io



A security

LRTWithdrawalManager

LRTWithdrawalManager is a request-based withdrawal system enabling users to convert
rsETH back to LSTs or ETH through queued withdrawals and instant withdrawals. Used by
rsETH holders to exit positions, with operators unlocking queued requests as assets become
available. The diff introduces Aave v3 integration for idle ETH yield generation, removes
initialization requirements from completion functions, adds customizable instant withdrawal
fee recipients, and enhances access control for queue unlocking.

The Aave integration deposits unlocked ETH awaiting withdrawal into Aave v3 to earn yield for
the protocol treasury, with principal tracking to prevent withdrawing accrued interest for user
redemptions. New functions configureAavelntegration, setAavelntegrationEnabled,
depositldleETHToAave, collectinterestToTreasury, and emergencyWithdrawFromAave manage
this integration. The unlockQueue function now accepts both ASSET_TRANSFER_ROLE and
OPERATOR_ROLE via onlyAssetTransferOrOperatorRole madifier, enabling more flexible
operational control. The instantWithdrawal function now supports directing fees to a
configurable recipient address via setinstantWithdrawalFeeRecipient, defaulting to protocaol
treasury if unset. The _processWithdrawalCompletion automatically withdraws from Aave
when the contract balance is insufficient to fulfill redemptions.

Privileged Functions

e configureAavelntegration

e setAavelntegrationEnabled

e depositToAaveExternal

e depositldleETHToAave

e collectinterestToTreasury

e emergencyWithdrawFromAave

Core Invariants:

INV 1: Only ASSET_TRANSFER_ROLE or OPERATOR_ROLE can unlock withdrawal queues.

INV 2: Only MANAGER role can configure Aave integration, enable/disable it, set instant
withdrawal parameters, and sweep remaining assets.

INV 3: Only OPERATOR_ROLE can manually deposit idle ETH to Aave and collect accrued
interest.

INV 4: Total unlocked ETH in Aave cannot be withdrawn for user redemptions, only principal.
INV 5: Aave integration cannot be enabled without valid gateway, aWETH, pool, and data
provider addresses.

INV B: Interest collection only succeeds if Aave balance exceeds deposited principal.

INV 7: When Aave is disabled, all ETH must be withdrawn from Aave before disabling.

Bailsec.io



A security

‘ Issue_02 Emergency withdrawal locks unclaimed interest

Severity

Low

Description

The emergencyWithdrawFromAave function leaves accrued interest
locked in the contract when executed without first collecting
interest to treasury. When managers perform emergency
withdrawals to pull principal from Aave, any interest that has
accumulated remains as idle ETH in the LRTWithdrawalManager
contract.

This interest cannot be easily recovered because the
sweepRemainingAssets function requires all unlocked withdrawals
to be completed before sweeping. If the withdrawn funds are
subsequently redeposited to Aave, the totalETHDepositedToAave
increases to include the previously earned interest, effectively
converting protocol-owned interest into principal. This results in
permanent loss of the interest attribution, preventing the protocol
from claiming those earnings as treasury revenue.

Recommendations

Collect interest to the treasury before calling the withdraw function
in emergencyWithdrawFromAave.

Comments /
Resolution

Fixed by following recommendation.

Bailsec.io

10



A security

m Disabling Aave reverts with accrued interest

Severity

Low

Description

The setAavelntegrationEnabled function cannot successfully
disable Aave integration when interest has accrued or donations
exist, blocking exits. When disabling, the function attempts to
withdraw the full aaveBalance which includes both principal and
accumulated interest.

However, the _withdrawFromAave function enforces principal-only
withdrawals, calculating withdrawablePrincipal as the minimum of
aaveBalance and totalETHDepositedToAave. When interest accrues,
aaveBalance exceeds totalETHDepositedToAave, making
withdrawablePrincipal equal to totalETHDepositedToAave. The
withdrawal request for the larger aaveBalance then reverts with
InsufficientPrincipalOnAave. This prevents managers from disabling
Aave integration in emergency scenarios, such as Aave pool
exploits or liquidity crises, until interest is separately collected.

Recommendations

Collect interest before withdrawing from Aave when disabling
integration, and consider directly calling the gateways withdrawETH
instead of using _withdrawFromAave.

Comments /
Resolution

Fixed by collecting interest first and modifying the
_withdrawFromAave.

Bailsec.io

11



A security

m Reconfiguration locks funds in old Aave pool

Severity

Low

Description

The configureAavelntegration function updates Aave contract
addresses without withdrawing depaosited funds from the existing
configuration, rendering those assets inaccessible. When managers
reconfigure Aave integration, the function revokes approval for the
old aWETH token and updates all storage variables to point to new
contracts.

However, any ETH previously deposited to the old Aave poal
remains in the old aave AWETH contract while the
totalETHDepositedToAave counter continues tracking those
deposits. The contract loses the ability to withdraw from the old
pool because all internal functions now reference the new
aaveAWETH address. Unlike setAavelntegrationEnabled which
withdraws all funds before disabling, configureAavelntegration
provides no mechanism to recover funds from the previous
configuration, creating a permanent asset lock scenario.

Recommendations

Withdraw all interest and funds from Aave at the beginning of
configureAavelntegration as well as update related state variables
before updating to new contract addresses.

Comments /
Resolution

Fixed by following recommendation.

Bailsec.io

12



A security

m Missing Aave capacity check leads to capital inefficiency

Severity

Low

Description

The unlockQueue function attempts to deposit the full
assetAmountUnlocked to Aave without checking available pool
capacity, leading to capital inefficiency. When the Aave pool is at or
near its supply cap, the entire depasit fails in the try-catch block
and funds remain idle in the contract. The contract implements
getAaveAvailableCapacity to query remaining capacity, but
unlockQueue does not utilize this before attempting deposits. When
Aave has partial capacity available, the protocol misses yield
generation opportunities.

For example, if 10 ETH of capacity exists but 100 ETH is unlocked,
the depaosit fails completely when 10 ETH could have been
deposited successfully. The comment acknowledges pool capacity
failures, but the implementation does not optimize for partial
deposits that would maximize capital.

Recommendations

Compare the deposit amount to the available capacity and deposit
up to the cap if the amount exceeds capacity.

Comments /
Resolution

Acknowledged.

Bailsec.io

13



A security

M Dangling approval for permanently disabled aave integration

Severity

Low

Description

In LRTWithdrawalManger, whenever the aave configuration is
changed via configureAavelntegration the approval is revoked
for previous configuration.

However in the case the protocol decides to permanently disable
aave integration rather than switch to a new config the approval for
this disable config cannot be revoked since disabling is done via
setAavelntegrationEnabled.

Recommendations

Consider also revoking and applying approvals on enable and
disable operations.

Comments /
Resolution

Fixed by following recommendation.

‘ Issue_07 Dust amount of profits can be left unclaimed due to rounding

Severity

Informational

Description

There can exist a 1-2 wei rounding when querying the aave AWETH
balanceOf(] and this case is handled in _checkHealthAave(] . But the
interest amount calculation does not account for this rounding in
the collectinterestToTreasury() function, this means that the
interestAmount calculation can be 1-2 wei off too and some aWETH
can be left unclaimed.

Recommendations

Consider acknowledging the issue.

Comments /
Resolution

Acknowledged.

Bailsec.io

14



A security

‘ Issue_08 instantWithdrawalFeeRecipient cannot be set to zero

Severity

Informational

Description

When the instantWithdrawalFeeRecipient address is set, all instant
withdrawal fees are redirected to it instead of the treasury. When it
is not set, the fees are sent to the treasury.

However function setinstantWithdrawalFeeRecipient does not allow
setting the fee recipient back to zero address due
checkNonZeroAddress. Setting it to zero address should be allowed
since the instant withdrawal fees can then be directed to the
treasury.

address feeRecipient = instantWithdrawalFeeRecipient;
if [feeRecipient == address(0]] {
/7 Backwards-compatible default: send fees to the protocol
treasury
feeRecipient =
IrtConfig.getContract(L RTConstants.PROTOCOL_TREASURY):
/
if[fee > 0] {
_transferAsset(asset, feeRecipient, fee);
emit InstantWithdrawalFeeCollected|[msg.sender, asset, fee):

/

function setinstantWithdrawalFeeRecipient(address feeRecipient]
external onlyL RTManager {
UtilLib.checkNonZeroAddress(feeRecipient):
instantWithdrawalFeeRecipient = feeRecipient;
emit InstantWithdrawalFeeRecipientUpdated(feeRecipient]:

/

Recommendations

Consider removing the checkNonZeroAddress check from
setinstantWithdrawalFeeRecipient. Alternatively if the fee recipient
will be set to the treasury address, consider documenting this in
comments for clarity.

Bailsec.io

15



Z\x security

Comments /
Resolution

Fixed. Added documentation

M Disabling AAVE integration can be griefed

Severity

Informational

Description

AAVE integration can be enabled/disabled using the
setAavelntegrationEnabled(] function. When changing the current
AAVE poal due to current pool being paused the AAVE integration
would be disabled , this operation can be griefed by an attacker by
donating 1 wei of aave AWETH which would trigger a withdrawal -

if [lenabled] {
/7 Withdraw all ETH from Aave back to contract

uint256 aaveBalance = aaveAWETH.balanceOfladdress(this]):

if [aaveBalance > 0] {
_withdrawFromAavelaaveBalance]:
/
/

And since AAVE poal is paused the call would revert blocking the
disable mechanism. This can also happen naturally without the
griefing vector where disabling on kelp will fail while funds are on
Aave and Aave is paused.

Recommendations

Consider acknowledging the issue

Comments /
Resolution

Acknowledged.

Bailsec.io

16



A security

NodeDelegator

NodeDelegator is a contract that manages individual delegation of restaked assets to
EigenLayer operators, with each instance representing a separate operator delegation. Used
by LRTDepositPoal to distribute assets across multiple EigenLayer operators for
diversification. The diff removes legacy nonce-based withdrawal tracking logic and transitions
asset transfer functions from OPERATOR_ROLE to the new ASSET_TRANSFER_ROLE for
improved permission granularity.

The removal of lastNonce checks from completeUnstaking and getAssetUnstaking eliminates
legacy pre-slashing withdrawal handling code that is no longer needed. The access control
change for transferBackToLRTDepositPool and transferETHToLRTUnstakingVault now
requires ASSET_TRANSFER_ROLE instead of OPERATOR_ROLE, separating fund movement
privileges from general operational tasks. The pause function now requires PAUSER_ROLE
instead of MANAGER role, aligning with protocol-wide emergency response controls. The
completeUnstaking function now directly calls decreaseUncompletedWithdrawalCount
without conditional nonce-based logic.

Privileged Functions

e transferBackTolLRTDepositPool
e transferETHToLRTUnstakingVault
e pause

Core Invariants:

INV 1: Only ASSET_TRANSFER_ROLE can transfer assets back to the depaosit pool or unstaking
vault.

17
Bailsec.io



A security

RSETH

RSETH is an upgradeable ERC20 token representing shares in the Kelp DAO liquid restaking
protocol, minted when users deposit LSTs and burned during withdrawals. Used by
LRTDepositPool for minting on deposits and by LRTWithdrawalManager for burning during
withdrawal processing. The diff introduces comprehensive emergency response mechanisms
including transfer blocking, fund recovery, permanent exemptions, and enhanced daily mint
limit tracking with period alignment.

The new transfer blocking system allows MANAGER role to freeze rsETH transfers from
specific addresses for 24-hour periods, with the ability to recover frozen funds to a custody
address while blocks are active. Permanent exemptions can be added for protocol contracts
that should never be blocked. The reinitialize function sets the custody address and aligns the
period start time within the last 24 hours for accurate daily limit tracking. New view functions
provide transparency into remaining daily mint limits and next reset timestamps. The pause
function access changed from MANAGER to PAUSER_ROLE for consistency with protocol-wide
pause mechanics, and getCurrentPeriodStartTime ensures period alignment accounting for
skipped days.

Privileged Functions

e addPermanentExemptions
e blockUserTransfers
e setCustodyAddress
e recoverfFrozenFunds

Core Invariants:

INV 1: Custody address must be non-zero when set or during fund recovery.

INV 2: Transfers from blocked addresses revert until block expires or funds are recovered.
INV 3: Permanently exempt addresses can never have their transfers blocked.

INV 4: Only MANAGER role can add permanent exemptions which cannot be reversed.

INV 5: Only ADMIN can recover frozen funds while the transfer block is active.

INV 6: Only ADMIN can set the custody address for recovered funds.

18
Bailsec.io



A security

Issue_10

Severity

LRTManager can pause minting by setting maxMintAmountPerDay
to O

Governance

Description

The LRTManager role can pause rsETH minting by setting
maxMintAmountPerDay to O.

This is an issue since the LRTManager role should not have pausing
capabilities in the case it's ever compromised.

Recommendations

Consider setting a minimum maxMintAmountPerDay as a safeguard.

Comments /
Resolution

Acknowledged.

Bailsec.io

19



A security

‘ Issue_11 Minting to blocked addresses bypasses blocks

Severity

Low

Description

The _transfer function does not enforce transfer blocks when
minting rsETH tokens, allowing blocked addresses to receive newly
minted tokens. The transfer block enforcement only checks the
from address to prevent outbound transfers from blocked users,
but does not validate the to address during mint operations where
from equals address zero. If unauthorized minting occurs due to a
compromised minter role or system malfunction, the protocol
blocking mechanism fails to prevent token issuance to blocked
addresses.

While blocked recipients cannot transfer these tokens elsewhere,
the unbacked minting creates downstream accounting issues. The
rsETH supply increases without corresponding asset backing,
distorting the rsETHPrice calculation and potentially enabling
exploitation during the period between detection and remediation.

Recommendations

Add a transfer block check for the to address in _transfer when
from is address zero to prevent minting to blocked addresses.
Alternatively block all transfers to blocked addresses.

Comments /
Resolution

Fixed by following recommendation.

Bailsec.io

20



A security

‘ Issue_12 checkDailyMintLimit() logic allows larger mints in short periods

Severity

Low

Description

checkDailyMintLimit in LRTOracle and RSETH is supposed to check
mint limits within a period where a period is a day long but the logic
allows for the max to be exceed from the perspective of an arbitrary
24 hour period., consider the following case -

1) Assume current blocktimestamp is X and on initialize
periodStart = X

2.) After 3.9 days the modifier is triggered and a large mint
occurs.

3.) As soon as 0.1day has elapsed then the period can be shifted
again since blockTimestamp > periodStart + 1 day [because
periodStart points to X + 3 and now we are at X + 4)

4.) This means just after 0.1 day the max mint amount can be
minted again. Resulting in more than the max mint amount
being minted in a short period of time.

Recommendations

Consider acknowledging and keeping such cases in mind when
configuring the max daily limit. Where a large mint can happen at
the end of an epoch and at the beginning of the next.

Comments /
Resolution

Acknowledged.

Bailsec.io

21



A security

‘ Issue_13 Blocked users can become exempt

Severity

Informational

Description

The addPermanentExemptions function allows managers to mark
addresses as permanently exempt without checking if those
addresses currently have active transfer blocks. When an address
is added to the permanent exemption list, the _transfer function
skips all block enforcement checks due to the
isPermanentlyExempt condition.

This means a user with an active transfer block can immediately
bypass their restriction if granted permanent exemption status,
without any delay or explicit acknowledgment that an active block is
being overridden.

While this requires manager action and represents an unlikely
operational scenario, it creates an inconsistency where blocked
addresses can gain immediate transfer capability through
exemption rather than having the block explicitly cleared or expired
first.

Recommendations

Consider adding a check in addPermanentExemptions to verify
whether addresses currently have active transfer blocks before
granting permanent exemption status.

Comments /
Resolution

Fixed by following recommendation.

Bailsec.io

22



A security

‘ Issue_14 Blocking reverts on single exempted address

Severity

Informational

Description

The blockUserTransfers function reverts the entire transaction if
any address in the batch is permanently exempt or zero address,
preventing all other addresses from being blocked. In time-sensitive
scenarios where managers need to quickly block multiple addresses
to prevent fund movement, this all-or-nothing behavior creates
operational risk. If an operator mistakenly includes one permanently
exempt address or zero address in a batch of accounts that need
immediate blocking, none of the addresses get blocked, requiring
the operator to identify the problematic address, rebuild the list,
and resubmit the transaction.

Recommendations

Skip addresses that are permanently exempt or zero address
instead of reverting, and emit events for skipped addresses to
maintain traceability.

Comments /
Resolution

Fixed by skipping exempt and zero addresses instead of reverting.

\|ssue_15 Redundant periodStartTime == 0 check

Severity

Informational

Description

checkDailylLimit and getNnextDailyLimitResetTimestamp
both include a periodStartTime == 0 check.

However, we can see that the periodStartTime is already set in the
reinitializer and there’s no way to set/reset after that, which means
the check doesn't actually do anything.

Recommendations

Consider removing the check.

Comments /
Resolution

Fixed by following recommendation.

Bailsec.io

23



A security

‘ Issue_16 blockUserTransfer can be front-run to rescue funds

Severity

Informational

Description

The blockUserTransfer function is used to temporarily freeze
rsETH tokens in an address by preventing transfers from the target
address for 24 hrs.

The issue is a malicious actor can simply front-run the
blockUserTransfer call to move their tokens to a different address
each time. Making it difficult for their tokens to be frozen/locked.

Recommendations

Consider acknowledging the issue.

Comments /
Resolution

Acknowledged.

Bailsec.io

24



A security

LRTConfigRoleChecker

LRTConfigRoleChecker is an abstract base contract providing role-based access control
modifiers inherited by all major protocol contracts. This contract bridges role checks with the
centralized LRTConfig access control system, enabling consistent permission enforcement
across LRTDepositPool, NodeDelegator, LRTWithdrawalManager, LRTOracle, and RSETH. The
diff adds two new madifiers to support the newly introduced ASSET_TRANSFER_ROLE for
granular control over fund movements.

The new onlyAssetTransferRole modifier restricts function access exclusively to addresses
holding ASSET_TRANSFER_ROLE, while onlyAssetTransferOrOperatorRole allows either
ASSET_TRANSFER_ROLE or OPERATOR_ROLE to execute. These modifiers enable separation
of asset transfer privileges from general operational duties, allowing the protocol to delegate
fund movement capabilities to specialized addresses without granting full operator
permissions. All modifiers check msg.sender against roles stored in the LRTConfig contract,
maintaining centralized role management.

Privileged Functions

none

Core Invariants:

INV 1: Only addresses with ASSET_TRANSFER_ROLE can execute functions protected by
onlyAssetTransferRole modifier.

INV 2: Either ASSET_TRANSFER_ROLE or OPERATOR_ROLE holders can execute functions
protected by onlyAssetTransferOrOperatorRole modifier.

25
Bailsec.io



A security

LRTConstants

LRTConstants is a library contract providing constant values and helper functions for
accessing protocol configuration. Used throughout the protocol as a single source of truth for
role identifiers, contract keys, and common addresses. The diff introduces a new access
control role for asset transfer operations, separating this privilege from the broader
OPERATOR_ROLE.

The new ASSET_TRANSFER_ROLE constant defines a distinct permission level specifically for
moving assets between protocol contracts. This role separation allows for more granular
access control where asset transfer operations can be delegated independently from other
operational duties. The library continues to provide helper functions that wrap LRTConfig
contract lookups, enabling cleaner code throughout the protocol when accessing configured
contract addresses.

Privileged Functions

none

Core Invariants:

INV 1: The ASSET_TRANSFER_ROLE is a distinct role separate from OPERATOR_ROLE for
moving assets between contracts.

26
Bailsec.io



	Kelp
	Bailsec - KelpDao - Core – Differential  - Final Report



